Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Overview

Dependencies

NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please try again, and if you're still stuck please send me an email: [email protected]

Paper Link: https://arxiv.org/abs/1905.10674

  1. Comet ML for logging. You will need an API key, username, and project name to do online logging.
  2. Pytorch version=1.0
  3. scikit-learn
  4. tqdm for progress bar
  5. pickle
  6. json
  7. joblib
  8. networkx for creating reddit graph

To conduct experiments you will need to download the appropriate datasets and preprocess them with the given preprocesssing scripts. This will involve changing the file paths from their default ones. For FB15k-237 there is the main dataset as well as the entity types dataset (links are provided in the main paper). Further, note that reddit uses 2 steps of preprocessing, the first to parse the json objects and then a second one to create the K-core graph.

Sample Commands

To reproduce the results we provide sample commands. Command Line arguments control which sensitive attributes are use and whether there is a compositional adversary or not.

  1. FB15k-237: ipython --pdb -- paper_trans_e.py --namestr='FB15k Comp Gamma=1000' --do_log --num_epochs=100 --embed_dim=20 --test_new_disc --sample_mask=True --use_attr=True --gamma=1000 --valid_freq=50

  2. MovieLens1M:

ipython --pdb -- main_movielens.py --namestr='100 GCMC Comp and Dummy' --use_cross_entropy --num_epochs=200 --test_new_disc --use_1M=True --show_tqdm=True --report_bias=True --valid_freq=5 --use_gcmc=True --num_classifier_epochs=200 --embed_dim=30 --sample_mask=True --use_attr=True --gamma=10 --do_log

  1. Reddit:

ipython --pdb -- main_reddit.py --namestr='Reddit Compositional No Held Out V2 Gamma=1' --valid_freq=5 --num_sensitive=10 --use_attr=True --use_cross_entropy --test_new_disc --num_epochs=50 --num_nce=1 --sample_mask=True --debug --gamma=1000

If you use this codebase or ideas in the paper please cite:

@article{bose2019compositional, \ title={Compositional Fairness Constraints for Graph Embeddings},\ author={Bose, Avishek Joey and Hamilton, William},\ conference={Proceedings of the Thirty-sixth International Conference on Machine Learning, Long Beach CA},\ year={2019} \ }

Owner
Avishek (Joey) Bose
I’m a PhD student at McGill / MILA where I work on Generative Models and Graph Representation Learning. Previously at Uber AI, UofT and Borealis AI
Avishek (Joey) Bose
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022