Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

Overview

SmallPebble

Project status: experimental, unstable.



SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch in Python, using NumPy/CuPy.

The implementation is in smallpebble.py.

Features:

  • Relatively simple implementation.
  • Powerful API for creating models.
  • Various operations, such as matmul, conv2d, maxpool2d.
  • Broadcasting support.
  • Eager or lazy execution.
  • It's easy to add new SmallPebble functions.
  • GPU, if use CuPy.

Graphs are built implicitly via Python objects referencing Python objects. The only real step taken towards improving performance is to use NumPy/CuPy.

Should I use this?

You probably want a more efficient and featureful framework, such as JAX, PyTorch, TensorFlow, etc.

Read on to see:

  • Examples of deep learning models created and trained using SmallPebble.
  • A brief guide to using SmallPebble.

For an introduction to autodiff and an even more minimal autodiff implementation, look here.


import matplotlib.pyplot as plt
import numpy as np
import smallpebble as sp
from smallpebble.misc import load_data
from tqdm import tqdm

Training a neural network on MNIST

Load the dataset, and create a validation set.

X_train, y_train, _, _ = load_data('mnist')  # load / download from openml.org
X_train = X_train/255

# Separate out data for validation.
X = X_train[:50_000, ...]
y = y_train[:50_000]
X_eval = X_train[50_000:60_000, ...]
y_eval = y_train[50_000:60_000]

Build a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = sp.linearlayer(28*28, 100)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 100)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

Train model, and measure performance on validation dataset.

NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()  # run the graph
    if np.isnan(loss_val.array):
        print("loss is nan, aborting.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('Neural network trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [00:03, 94.26it/s]                         

png

Training a convolutional neural network on MNIST

Make a function that creates trainable convolutional layers:

def convlayer(height, width, depth, n_kernels, strides=[1,1]):
    # Initialise kernels:
    sigma = np.sqrt(6 / (height*width*depth+height*width*n_kernels))
    kernels_init = sigma*(np.random.random([height, width, depth, n_kernels]) - .5)
    # Wrap with sp.Variable, so we can compute gradients:
    kernels = sp.Variable(kernels_init)
    # Flag as learnable, so we can extract from the model to train:
    kernels = sp.learnable(kernels)
    # Curry, to set `strides`:
    func = lambda images, kernels: sp.conv2d(images, kernels, strides=strides, padding='SAME')
    # Curry, to use the kernels created here:
    return lambda images: sp.Lazy(func)(images, kernels)

Define a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=1, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 14*14*16]))(h)
h = sp.linearlayer(14*14*16, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the dimensions we expected.
X_in.assign_value(sp.Variable(X_train[0:3,:].reshape([-1,28,28,1])))
y_true.assign_value(y_train[0])
h.run().array.shape
(3, 10)
NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval.reshape([-1,28,28,1]), y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(
    enumerate(sp.batch(X.reshape([-1,28,28,1]), y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('CNN trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [03:35,  1.40it/s]                         

png

Training a CNN on CIFAR

Load the dataset.

X_train, y_train, _, _ = load_data('cifar')
X_train = X_train/255

# Separate out some data for validation.
X = X_train[:45_000, ...]
y = y_train[:45_000]
X_eval = X_train[45_000:50_000, ...]
y_eval = y_train[45_000:50_000]

Plot, to check it's the right data.

# This code is from: https://www.tensorflow.org/tutorials/images/cnn

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(8,8))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i,:].reshape(32,32,3), cmap=plt.cm.binary)
    plt.xlabel(class_names[y_train[i]])

plt.show()

png

Define the model. Due to my lack of ram, it is kept relatively small.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=3, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = convlayer(height=3, width=3, depth=16, n_kernels=32)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 8*8*32]))(h)
h = sp.linearlayer(8*8*32, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
h = sp.Lazy(sp.softmax)(h)

y_pred = h
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the expected dimensions
X_in.assign_value(sp.Variable(X[0:3, :].reshape([-1, 32, 32, 3])))
h.run().shape
(3, 10)

Train the model.

NUM_EPOCHS = 3000
BATCH_SIZE = 32

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
       
    xbatch_images = xbatch.reshape([-1, 32, 32, 3])
    X_in.assign_value(sp.Variable(xbatch_images))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
    
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)  
    sp.sgd_step(learnables, gradients, 3e-3)
          
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch.reshape([-1, 32, 32, 3])))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.plot(validation_acc)
plt.show()
3001it [25:16,  1.98it/s]                            

png

...And we see some improvement, despite the model's small size, the unsophisticated optimisation method and the difficulty of the task.


Brief guide to using SmallPebble

SmallPebble provides the following building blocks to make models with:

  • sp.Variable
  • SmallPebble operations, such as sp.add, sp.mul, etc.
  • sp.get_gradients
  • sp.Lazy
  • sp.Placeholder (this is really just sp.Lazy on the identity function)
  • sp.learnable
  • sp.get_learnables

The following examples show how these are used.

sp.Variable & sp.get_gradients

With SmallPebble, you can:

  • Wrap NumPy arrays in sp.Variable
  • Apply SmallPebble operations (e.g. sp.matmul, sp.add, etc.)
  • Compute gradients with sp.get_gradients
a = sp.Variable(np.random.random([2, 2]))
b = sp.Variable(np.random.random([2, 2]))
c = sp.Variable(np.random.random([2]))
y = sp.mul(a, b) + c
print('y.array:\n', y.array)

gradients = sp.get_gradients(y)
grad_a = gradients[a]
grad_b = gradients[b]
grad_c = gradients[c]
print('grad_a:\n', grad_a)
print('grad_b:\n', grad_b)
print('grad_c:\n', grad_c)
y.array:
 [[0.50222439 0.67745659]
 [0.68666171 0.58330707]]
grad_a:
 [[0.56436821 0.2581522 ]
 [0.89043144 0.25750461]]
grad_b:
 [[0.11665152 0.85303194]
 [0.28106794 0.48955456]]
grad_c:
 [2. 2.]

Note that y is computed straight away, i.e. the (forward) computation happens immediately.

Also note that y is a sp.Variable and we could continue to carry out SmallPebble operations on it.

sp.Lazy & sp.Placeholder

Lazy graphs are constructed using sp.Lazy and sp.Placeholder.

lazy_node = sp.Lazy(lambda a, b: a + b)(1, 2)
print(lazy_node)
print(lazy_node.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d58d50>
3
a = sp.Lazy(lambda a: a)(2)
y = sp.Lazy(lambda a, b, c: a * b + c)(a, 3, 4)
print(y)
print(y.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d41d50>
10

Forward computation does not happen immediately - only when .run() is called.

a = sp.Placeholder()
b = sp.Variable(np.random.random([2, 2]))
y = sp.Lazy(sp.matmul)(a, b)

a.assign_value(sp.Variable(np.array([[1,2], [3,4]])))

result = y.run()
print('result.array:\n', result.array)
result.array:
 [[1.01817665 2.54693119]
 [2.42244218 5.69810698]]

You can use .run() as many times as you like.

Let's change the placeholder value and re-run the graph:

a.assign_value(sp.Variable(np.array([[10,20], [30,40]])))
result = y.run()
print('result.array:\n', result.array)
result.array:
 [[10.18176654 25.46931189]
 [24.22442177 56.98106985]]

Finally, let's compute gradients:

gradients = sp.get_gradients(result)

Note that sp.get_gradients is called on result, which is a sp.Variable, not on y, which is a sp.Lazy instance.

sp.learnable & sp.get_learnables

Use sp.learnable to flag parameters as learnable, allowing them to be extracted from a lazy graph with sp.get_learnables.

This enables the workflow of building a model, while flagging parameters as learnable, and then extracting all the parameters in one go at the end.

a = sp.Placeholder()
b = sp.learnable(sp.Variable(np.random.random([2, 1])))
y = sp.Lazy(sp.matmul)(a, b)
y = sp.Lazy(sp.add)(y, sp.learnable(sp.Variable(np.array([5]))))

learnables = sp.get_learnables(y)

for learnable in learnables:
    print(learnable)
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ebd0>
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ec50>

Switching between NumPy and CuPy

We can dynamically switch between NumPy and CuPy:

import cupy
import numpy
import smallpebble as sp

# Switch to CuPy.
sp.array_library = cupy

# And back to NumPy again:
sp.array_library = numpy
Owner
Sidney Radcliffe
Sidney Radcliffe
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022