BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

Overview

BasicRL: easy and fundamental codes for deep reinforcement learning

BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

It is developped for beginner in DRL with the following advantages:

  • Practical: it fills the gap between the theory and practice of DRL.
  • Easy: the codes is easier than OpenAI Spinning Up in terms of achieving the same functionality.
  • Lightweight: the core codes <1,500 lines, using Pytorch ans OpenAI Gym.

The following DRL algorithms is contained in BasicRL:

  • DQN, DoubleDQN, DuelingDQN, NoisyDQN, DistributionalDQN
  • REINFORCE, VPG, PPO, DDPG, TD3 and SAC
  • PerDQN, N-step-learning DQN and Rainbow are coming

The differences compared to OpenAI Spinning Up:

  • Pros: BasicRL is currently can be used on Windows and Linux (it hasn't been extensively tested on OSX). However, Spinning Up is only supported on Linux and OSX.
  • Cons: OpenMPI is not used in BasicRL so it is slower than Spinning Up.
  • Others: BasicRL considers an agent as a class.

The differences compared to rainbow-is-all-you-need:

  • Pros: BasicRL reuse the common codes, so it is lightwight. Besides, BasicRL modifies the form of output and plot, it can use the Spinning Up's log file.
  • Others: BasicRL uses inheritance of classes, so you can see key differences between each other.

File Structure

BasicRL:

├─pg    
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py    
│  └─utils.py      
│  └─logx.py     
├─pg_cpu     
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py  
│  └─utils.py  
│  └─logx.py  
├─rainbow     
│  └─dqn/double_dqn/dueling_dqn/moisy_dqn/distributional_dqn.py  
│  └─utils.py   
│  └─logx.py   
├─requirements.txt  
└─plot.py

Code Structure

Core code

xxx.py(dqn.py...)

- agent class:
  - init
  - compute loss
  - update
  - get action
  - test agent
  - train
- main

Common code

utils.py

- expereience replay buffer: On-policy/Off-policy replay buffer
- network  

logx.py

- Logger
- EpochLogger

plot.py

- plot data
- get datasets
- get all datasets
- make plots
- main

Installation

BasicRL is tested on Anaconda virtual environment with Python3.7+

conda create -n BasicRL python=3.7
conda activate BasicRL

Clone the repository:

git clone [email protected]:RayYoh/BasicRL.git
cd BasicRL

Install required libraries:

pip install -r requirements.txt

BasicRL code library makes local experiments easy to do, and there are two ways to run them: either from the command line, or through function calls in scripts.

Experiment

After testing, Basic RL runs perfectly, but its performance has not been tested. Users can tweak the parameters and change the experimental environment to output final results for comparison. Possible outputs are shown below:

dqn pg

Contribution

BasicRL is not yet complete and I will continue to maintain it. To any interested in making BasicRL better, any contribution is warmly welcomed. If you want to contribute, please send a Pull Request.
If you are not familiar with creating a Pull Request, here are some guides:

Related Link

Citation

To cite this repository:

@misc{lei,
  author = {Lei Yao},
  title = {BasicRL: easy and fundamental codes for deep reinforcement learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RayYoh/BasicRL}},
}
Owner
RayYoh
Research interests: Robot Learning, Robotic
RayYoh
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022