Dual Attention Network for Scene Segmentation (CVPR2019)

Related tags

Deep LearningDANet
Overview

Dual Attention Network for Scene Segmentation(CVPR2019)

Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu

Introduction

We propose a Dual Attention Network (DANet) to adaptively integrate local features with their global dependencies based on the self-attention mechanism. And we achieve new state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff-10k dataset.

image

Cityscapes testing set result

We train our DANet-101 with only fine annotated data and submit our test results to the official evaluation server.

image

Updates

2020/9Renew the code, which supports Pytorch 1.4.0 or later!

2020/8:The new TNNLS version DRANet achieves 82.9% on Cityscapes test set (submit the result on August, 2019), which is a new state-of-the-arts performance with only using fine annotated dataset and Resnet-101. The code will be released in DRANet.

2020/7:DANet is supported on MMSegmentation, in which DANet achieves 80.47% with single scale testing and 82.02% with multi-scale testing on Cityscapes val set.

2018/9:DANet released. The trained model with ResNet101 achieves 81.5% on Cityscapes test set.

Usage

  1. Install pytorch

    • The code is tested on python3.6 and torch 1.4.0.
    • The code is modified from PyTorch-Encoding.
  2. Clone the resposity

    git clone https://github.com/junfu1115/DANet.git 
    cd DANet 
    python setup.py install
  3. Dataset

    • Download the Cityscapes dataset and convert the dataset to 19 categories.
    • Please put dataset in folder ./datasets
  4. Evaluation for DANet

    • Download trained model DANet101 and put it in folder ./experiments/segmentation/models/

    • cd ./experiments/segmentation/

    • For single scale testing, please run:

    • CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset citys --model danet --backbone resnet101 --resume  models/DANet101.pth.tar --eval --base-size 2048 --crop-size 768 --workers 1 --multi-grid --multi-dilation 4 8 16 --os 8 --aux --no-deepstem
    • Evaluation Result

      The expected scores will show as follows: DANet101 on cityscapes val set (mIoU/pAcc): 79.93/95.97(ss)

  5. Evaluation for DRANet

    • Download trained model DRANet101 and put it in folder ./experiments/segmentation/models/

    • Evaluation code is in folder ./experiments/segmentation/

    • cd ./experiments/segmentation/

    • For single scale testing, please run:

    • CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset citys --model dran --backbone resnet101 --resume  models/dran101.pth.tar --eval --base-size 2048 --crop-size 768 --workers 1 --multi-grid --multi-dilation 4 8 16 --os 8 --aux
    • Evaluation Result

      The expected scores will show as follows: DRANet101 on cityscapes val set (mIoU/pAcc): 81.63/96.62 (ss)

Citation

if you find DANet and DRANet useful in your research, please consider citing:

@article{fu2020scene,
  title={Scene Segmentation With Dual Relation-Aware Attention Network},
  author={Fu, Jun and Liu, Jing and Jiang, Jie and Li, Yong and Bao, Yongjun and Lu, Hanqing},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}
@inproceedings{fu2019dual,
  title={Dual attention network for scene segmentation},
  author={Fu, Jun and Liu, Jing and Tian, Haijie and Li, Yong and Bao, Yongjun and Fang, Zhiwei and Lu, Hanqing},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3146--3154},
  year={2019}
}

Acknowledgement

Thanks PyTorch-Encoding, especially the Synchronized BN!

Owner
Jun Fu
Jun Fu
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022