Dual Attention Network for Scene Segmentation (CVPR2019)

Related tags

Deep LearningDANet
Overview

Dual Attention Network for Scene Segmentation(CVPR2019)

Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu

Introduction

We propose a Dual Attention Network (DANet) to adaptively integrate local features with their global dependencies based on the self-attention mechanism. And we achieve new state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff-10k dataset.

image

Cityscapes testing set result

We train our DANet-101 with only fine annotated data and submit our test results to the official evaluation server.

image

Updates

2020/9Renew the code, which supports Pytorch 1.4.0 or later!

2020/8:The new TNNLS version DRANet achieves 82.9% on Cityscapes test set (submit the result on August, 2019), which is a new state-of-the-arts performance with only using fine annotated dataset and Resnet-101. The code will be released in DRANet.

2020/7:DANet is supported on MMSegmentation, in which DANet achieves 80.47% with single scale testing and 82.02% with multi-scale testing on Cityscapes val set.

2018/9:DANet released. The trained model with ResNet101 achieves 81.5% on Cityscapes test set.

Usage

  1. Install pytorch

    • The code is tested on python3.6 and torch 1.4.0.
    • The code is modified from PyTorch-Encoding.
  2. Clone the resposity

    git clone https://github.com/junfu1115/DANet.git 
    cd DANet 
    python setup.py install
  3. Dataset

    • Download the Cityscapes dataset and convert the dataset to 19 categories.
    • Please put dataset in folder ./datasets
  4. Evaluation for DANet

    • Download trained model DANet101 and put it in folder ./experiments/segmentation/models/

    • cd ./experiments/segmentation/

    • For single scale testing, please run:

    • CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset citys --model danet --backbone resnet101 --resume  models/DANet101.pth.tar --eval --base-size 2048 --crop-size 768 --workers 1 --multi-grid --multi-dilation 4 8 16 --os 8 --aux --no-deepstem
    • Evaluation Result

      The expected scores will show as follows: DANet101 on cityscapes val set (mIoU/pAcc): 79.93/95.97(ss)

  5. Evaluation for DRANet

    • Download trained model DRANet101 and put it in folder ./experiments/segmentation/models/

    • Evaluation code is in folder ./experiments/segmentation/

    • cd ./experiments/segmentation/

    • For single scale testing, please run:

    • CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset citys --model dran --backbone resnet101 --resume  models/dran101.pth.tar --eval --base-size 2048 --crop-size 768 --workers 1 --multi-grid --multi-dilation 4 8 16 --os 8 --aux
    • Evaluation Result

      The expected scores will show as follows: DRANet101 on cityscapes val set (mIoU/pAcc): 81.63/96.62 (ss)

Citation

if you find DANet and DRANet useful in your research, please consider citing:

@article{fu2020scene,
  title={Scene Segmentation With Dual Relation-Aware Attention Network},
  author={Fu, Jun and Liu, Jing and Jiang, Jie and Li, Yong and Bao, Yongjun and Lu, Hanqing},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}
@inproceedings{fu2019dual,
  title={Dual attention network for scene segmentation},
  author={Fu, Jun and Liu, Jing and Tian, Haijie and Li, Yong and Bao, Yongjun and Fang, Zhiwei and Lu, Hanqing},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3146--3154},
  year={2019}
}

Acknowledgement

Thanks PyTorch-Encoding, especially the Synchronized BN!

Owner
Jun Fu
Jun Fu
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023