BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

Related tags

Deep LearningBADet
Overview

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

As of Apr. 17th, 2021, 1st place in KITTI BEV detection leaderboard and on par performance on KITTI 3D detection leaderboard. The detector can run at 7.1 FPS.

Authors: Rui Qian, Xin Lai, Xirong Li

[arXiv] [elsevier]

Citation

If you find this code useful in your research, please consider citing our work:

@InProceedings{qian2022pr,
author = {Rui Qian and Xin Lai and Xirong Li},
title = {BADet: Boundary-Aware 3D Object Detection from Point Clouds},
booktitle = {Pattern Recognition (PR)},
month = {January},
year = {2022}
}
@misc{qian20213d,
title={3D Object Detection for Autonomous Driving: A Survey}, 
author={Rui Qian and Xin Lai and Xirong Li},
year={2021},
eprint={2106.10823},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Updates

2021-03-17: The performance (using 40 recall poisitions) on test set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:98.75, 95.61, 90.64
bev  AP:95.23, 91.32, 86.48 
3d   AP:89.28, 81.61, 76.58 
aos  AP:98.65, 95.34, 90.28 

Introduction

model Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.

Dependencies

  • python3.5+
  • pytorch (tested on 1.1.0)
  • opencv
  • shapely
  • mayavi
  • spconv (v1.0)

Installation

  1. Clone this repository.
  2. Compile C++/CUDA modules in mmdet/ops by running the following command at each directory, e.g.
$ cd mmdet/ops/points_op
$ python3 setup.py build_ext --inplace
  1. Setup following Environment variables, you may add them to ~/.bashrc:
export NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so
export NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so
export NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice
export LD_LIBRARY_PATH=/home/qianrui/anaconda3/lib/python3.7/site-packages/spconv;

Data Preparation

  1. Download the 3D KITTI detection dataset from here. Data to download include:

    • Velodyne point clouds (29 GB): input data to VoxelNet
    • Training labels of object data set (5 MB): input label to VoxelNet
    • Camera calibration matrices of object data set (16 MB): for visualization of predictions
    • Left color images of object data set (12 GB): for visualization of predictions
  2. Create cropped point cloud and sample pool for data augmentation, please refer to SECOND.

  3. Split the training set into training and validation set according to the protocol here.

  4. You could run the following command to prepare Data:

$ python3 tools/create_data.py

[email protected]:~/qianrui/kitti$ tree -L 1
data_root = '/home/qr/qianrui/kitti/'
├── gt_database
├── ImageSets
├── kitti_dbinfos_train.pkl
├── kitti_dbinfos_trainval.pkl
├── kitti_infos_test.pkl
├── kitti_infos_train.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_val.pkl
├── train.txt
├── trainval.txt
├── val.txt
├── test.txt
├── training   <-- training data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced
└── testing  <--- testing data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced

Pretrained Model

You can download the pretrained model [Model][Archive], which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance (using 11 recall poisitions) on validation set is as follows:

[40, 1600, 1408]
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 3769/3769, 7.1 task/s, elapsed: 533s, ETA:     0s
Car [email protected], 0.70, 0.70:
bbox AP:98.27, 90.22, 89.66
bev  AP:90.59, 88.85, 88.09
3d   AP:90.06, 85.75, 78.98
aos  AP:98.18, 89.98, 89.25
Car [email protected], 0.50, 0.50:
bbox AP:98.27, 90.22, 89.66
bev  AP:98.31, 90.21, 89.73
3d   AP:98.20, 90.11, 89.61
aos  AP:98.18, 89.98, 89.25

Quick demo

You could run the following command to evaluate the pretrained model:

cd mmdet/tools
# vim ../configs/car_cfg.py(modify score_thr=0.4, score_thr=0.3 for val split and test split respectively.)
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/epoch_50.pth
Model Archive Parameters Moderate(Car) Pretrained Model Predicts
BADet(val) [Link] 44.2 MB 86.21% [icloud drive] [Results]
BADet(test) [Link] 44.2 MB 81.61% [icloud drive] [Results]

Training

To train the BADet with single GPU, run the following command:

cd mmdet/tools
python3 train.py ../configs/car_cfg.py

Inference

To evaluate the model, run the following command:

cd mmdet/tools
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/latest.pth

Acknowledgement

The code is devloped based on mmdetection, some part of codes are borrowed from SA-SSD, SECOND, and PointRCNN.

Contact

If you have questions, you can contact [email protected].

Owner
Rui Qian
Rui Qian
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022