TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

Overview

TweebankNLP

License

This repo contains the new Tweebank-NER dataset and Twitter-Stanza pipeline for state-of-the-art Tweet NLP. Tweebank-NER V1.0 is the annotated NER dataset based on Tweebank V2, the main UD treebank for English Twitter NLP tasks. The Twitter-Stanza pipeline provides pre-trained Tweet NLP models (NER, tokenization, lemmatization, POS tagging, dependency parsing) with state-of-the-art or competitive performance. The models are fully compatible with Stanza and provide both Python and command-line interfaces for users.

Installation

# please install from the source
pip install -e .

# download glove and pre-trained models
sh download_twitter_resources.sh

Python Interface for Twitter-Stanza

import stanza

# config for the `en_tweet` pipeline (trained only on Tweebank)
config = {
          'processors': 'tokenize,lemma,pos,depparse,ner',
          'lang': 'en',
          'tokenize_pretokenized': True, # disable tokenization
          'tokenize_model_path': './saved_models/tokenize/en_tweet_tokenizer.pt',
          'lemma_model_path': './saved_models/lemma/en_tweet_lemmatizer.pt',
          "pos_model_path": './saved_models/pos/en_tweet_tagger.pt',
          "depparse_model_path": './saved_models/depparse/en_tweet_parser.pt',
          "ner_model_path": './saved_models/ner/en_tweet_nertagger.pt'
}

# Initialize the pipeline using a configuration dict
nlp = stanza.Pipeline(**config)
doc = nlp("Oh ikr like Messi better than Ronaldo but we all like Ronaldo more")
print(doc) # Look at the result

Running Twitter-Stanza (Command Line Interface)

NER

We provide two pre-trained Stanza NER models:

  • en_tweenut17: trained on TB2+WNUT17
  • en_tweet: trained on TB2
source twitter-stanza/scripts/config.sh

python stanza/utils/training/run_ner.py en_tweenut17 \
--mode predict \
--score_test \
--wordvec_file ../data/wordvec/English/en.twitter100d.xz \
--eval_file data/ner/en_tweet.test.json

Syntactic NLP Models

We provide two pre-trained models for the following NLP tasks:

  • tweet_ewt: trained on TB2+UD-English-EWT
  • en_tweet: trained on TB2

1. Tokenization

python stanza/utils/training/run_tokenizer.py tweet_ewt \
--mode predict \
--score_test \
--txt_file data/tokenize/en_tweet.test.txt \
--label_file  data/tokenize/en_tweet-ud-test.toklabels \
--no_use_mwt 

2. Lemmatization

python stanza/utils/training/run_lemma.py tweet_ewt \
--mode predict \
--score_test \
--gold_file data/depparse/en_tweet.test.gold.conllu \
--eval_file data/depparse/en_tweet.test.in.conllu 

3. POS Tagging

python stanza/utils/training/run_pos.py tweet_ewt \
--mode predict \
--score_test \
--eval_file data/pos/en_tweet.test.in.conllu \
--gold_file data/depparse/en_tweet.test.gold.conllu 

4. Dependency Parsing

python stanza/utils/training/run_depparse.py tweet_ewt \
--mode predict \
--score_test \
--wordvec_file ../data/wordvec/English/en.twitter100d.txt \
--eval_file data/depparse/en_tweet.test.in.conllu \
--gold_file data/depparse/en_tweet.test.gold.conllu 

Training Twitter-Stanza

Please refer to the TRAIN_README.md for training the Twitter-Stanza neural pipeline.

References

If you use this repository in your research, please kindly cite our paper as well as the Stanza papers.

@article{jiang2022tweebank,
    title={Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis},
    author={Jiang, Hang and Hua, Yining and Beeferman, Doug and Roy, Deb},
    publisher={arXiv},
    year={2022}
}

Acknowledgement

The Twitter-Stanza pipeline is a friendly fork from the Stanza libaray with a few modifications to adapt to tweets. The repository is fully compatible with Stanza. This research project is funded by MIT Center for Constructive Communication (CCC).

Owner
Laboratory for Social Machines
Promoting deeper learning and understanding in human networks | Publications: http://socialmachines.org/publications
Laboratory for Social Machines
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022