ReCoin - Restoring our environment and businesses in parallel

Related tags

Text Data & NLPReCoin
Overview

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales

"Reduce Reuse Recoin"

Theme Covered:

The themes covered in this project include post pandemic restoration for both the environment, small buisnesses, and personal finance! The app pitched uses an extensivly trained AI system to detect trash and sort it to the proper bin from your smartphone. While using the app, users will be incentivized to use the app and recover the environment through the opportunity to earn points, which will be redeemable in partnering stores.

Problem Statment:

As our actions continue to damage the environment, it is important that we invest in solutions that help restore our community in more sustainable practices. Moreover, an average person creates over 4 pounds of trash a day, and the EPA has found that over 75% of the waste we create are recyclable. As garbage sorting is so niche from town-to-town, students have reportable agreed to the difficulty of accurately sorting garbage, thus causing this significant misplacement of garbage.

Our passion to make our community globally and locally more sustainable has fueled us to use artificial intelligence to develop an app that not only makes sorting garbage as easy as using Snapchat, but also rewards individuals for sorting their garbage properly.

For this reason, we would like to introduce Recoin. This intuitive app allows a person to scan any product and easily find the bin that the trash belongs based off their location. Furthermore, if they attempt to sell their product, or use our app, they will earn points which will be redeemable in partnering stores that advocate for the environment. The more the user uses the app, the more points they receive, resulting in better items to redeem in stores. With this app we will not only help recover the environment, but also increase sales in small businesses which struggled during the pandemic to recover.

About the App:

Incentive Breakdown:

Please note that these expenses are estimated expectations for potential benefit packages but are not defined yet.

We are proposing a $1 discount for participating small businesses when 100 coffee/drink cups are returned to participating restaurants. This will be easy for small companies to uphold financially, while providing a motivation for individuals to use our scanner.

Amazon costs around $0.5 to $2 on packaging, so we are proposing that Amazon provides a $15 gift card per 100 packages returned to Amazon. As the 100 packages can cost from $50 to $200, this incentive will save Amazon resources by 5 to 100 times the amount, while providing positive public perception for reusing.

As recycling plastic for 3D filament is an up-and-coming technology that can revolutionize environment sustainability, we would like to create a system where providing materials for such causes can give the individuals benefits.

Lastly, as metals become more valuable, we hope to provide recyclable metals to companies to reduce their expenses through our platform.

The next steps to this endeavor will be to provide benefits for individuals that provide batteries and electronics with some sort of incentive as well.

User Interface:

#add user stuff!!!!!!!!!!!1

Technological Specifics and Next Steps:

Frontend

----ADDDDDDDDDDDD GRAPHHHHHHHHHHHHHHHHHHHHHHHH____ We used to React.JS to develop components for the webcam footage and capture screen shots. It was also utilized to create the rest of the overall UI design.

Backend

Trash Detection AI:

On Pytorch, we utilized an open-source trash detection AI software and data, to train the trash detection system originally developed by IamAbhinav03. The system utilizes over 2500 images to train, test, and validate the system. To improve the system, we increased the number of epochs to 8 rather than 5 (number of passes the training system has completed) to train it for an additional four hours than required. This allowed the accuracy to increase by 4% more than the original system. We also modified the test train and split amounts to 70%, 10%, and 20% respectively, as more prominent AI studies have found this distribution to receive the best results.

Currently, the system is predicted to have a 94% accuracy, but in the future, we plan on using reinforcement learning in our beta testing to continuously improve our algorithm. Reinforcement learning allows for the data to be more accurate, through learning from user correction. This will allow AI to become more precise as it gains more popularity.

Other Systems:

By using Matbox API and the Google Suite/API, we will be creating maps to find recycling locations and an extensively thorough Recoin currency system that can easily be transferred to real time money for consumers and businesses.

Stakeholders:

After the completion of this project, we intend to continue to pursue the app to improve our communities’ sustainability. After looking at the demographic of interest in our school itself, we know that students will be interested in this app, not only from convenience but also through the reward system. Local cafes and Starbucks already have initiatives to improve public perspective and support the environment (i.e., using paper straws and cups), therefore supporting this new endeavor will be an interest to them. As branding is everything in a business, having a positive public perspective will increase sales.

Amazon:

As Amazon continues to be the leading online marketplace, more packages will continue to be made, which can be detrimental to the world's limited resources. We will be training the UI to track packages that are Amazon based. With such training, we would like to be able to implement a system where the packaging can be sent back to Amazon to be reused for credit. This will allow Amazon to form a more environmentally friendly corporate image, while also saving on resources.

Small Businesses:

As the pandemic has caused a significant decline in small business revenue, we intend to mainly partner with small businesses in this project. The software will also help increase small business sales as by supporting the app, students will be more inclined to go to their store due to a positive public image, and the additive discounts will attract more customers. In the future, we wish to train AI to also detect trash of value (i.e.. Broken smartphones, precious metals), so that consumers can sell it in a bundle to local companies that can benefit from the material (ex: 3D-printing companies that convert used plastic to filament)

Timeline:

The following timeline will be used to ensure that our project will be on the market as soon as possible:

Code Refrences

https://medium.datadriveninvestor.com/deploy-your-pytorch-model-to-production-f69460192217

https://narainsreehith.medium.com/upload-image-video-to-flask-backend-from-react-native-app-expo-app-1aac5653d344

https://pytorch.org/tutorials/beginner/saving_loading_models.html

https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html

https://pytorch.org/get-started/locally/

https://www.kdnuggets.com/2019/03/deploy-pytorch-model-production.html

Refrences for Information

https://www.rubicon.com/blog/trash-reason-statistics-facts/

https://www.dosomething.org/us/facts/11-facts-about-recycling

https://www.forbes.com/sites/forbesagencycouncil/2016/10/31/why-brand-image-matters-more-than-you-think/?sh=6a4b462e10b8

https://www.channelreply.com/blog/view/ebay-amazon-packaging-costs

Owner
sabrina button
First Year Engineering Student at Queen's University (she/her)
sabrina button
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022