Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

Overview

TextDistance

TextDistance logo

Build Status PyPI version Status License

TextDistance -- python library for comparing distance between two or more sequences by many algorithms.

Features:

  • 30+ algorithms
  • Pure python implementation
  • Simple usage
  • More than two sequences comparing
  • Some algorithms have more than one implementation in one class.
  • Optional numpy usage for maximum speed.

Algorithms

Edit based

Algorithm Class Functions
Hamming Hamming hamming
MLIPNS Mlipns mlipns
Levenshtein Levenshtein levenshtein
Damerau-Levenshtein DamerauLevenshtein damerau_levenshtein
Jaro-Winkler JaroWinkler jaro_winkler, jaro
Strcmp95 StrCmp95 strcmp95
Needleman-Wunsch NeedlemanWunsch needleman_wunsch
Gotoh Gotoh gotoh
Smith-Waterman SmithWaterman smith_waterman

Token based

Algorithm Class Functions
Jaccard index Jaccard jaccard
Sørensen–Dice coefficient Sorensen sorensen, sorensen_dice, dice
Tversky index Tversky tversky
Overlap coefficient Overlap overlap
Tanimoto distance Tanimoto tanimoto
Cosine similarity Cosine cosine
Monge-Elkan MongeElkan monge_elkan
Bag distance Bag bag

Sequence based

Algorithm Class Functions
longest common subsequence similarity LCSSeq lcsseq
longest common substring similarity LCSStr lcsstr
Ratcliff-Obershelp similarity RatcliffObershelp ratcliff_obershelp

Compression based

Normalized compression distance with different compression algorithms.

Classic compression algorithms:

Algorithm Class Function
Arithmetic coding ArithNCD arith_ncd
RLE RLENCD rle_ncd
BWT RLE BWTRLENCD bwtrle_ncd

Normal compression algorithms:

Algorithm Class Function
Square Root SqrtNCD sqrt_ncd
Entropy EntropyNCD entropy_ncd

Work in progress algorithms that compare two strings as array of bits:

Algorithm Class Function
BZ2 BZ2NCD bz2_ncd
LZMA LZMANCD lzma_ncd
ZLib ZLIBNCD zlib_ncd

See blog post for more details about NCD.

Phonetic

Algorithm Class Functions
MRA MRA mra
Editex Editex editex

Simple

Algorithm Class Functions
Prefix similarity Prefix prefix
Postfix similarity Postfix postfix
Length distance Length length
Identity similarity Identity identity
Matrix similarity Matrix matrix

Installation

Stable

Only pure python implementation:

pip install textdistance

With extra libraries for maximum speed:

pip install "textdistance[extras]"

With all libraries (required for benchmarking and testing):

pip install "textdistance[benchmark]"

With algorithm specific extras:

pip install "textdistance[Hamming]"

Algorithms with available extras: DamerauLevenshtein, Hamming, Jaro, JaroWinkler, Levenshtein.

Dev

Via pip:

pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance

Or clone repo and install with some extras:

git clone https://github.com/life4/textdistance.git
pip install -e ".[benchmark]"

Usage

All algorithms have 2 interfaces:

  1. Class with algorithm-specific params for customizing.
  2. Class instance with default params for quick and simple usage.

All algorithms have some common methods:

  1. .distance(*sequences) -- calculate distance between sequences.
  2. .similarity(*sequences) -- calculate similarity for sequences.
  3. .maximum(*sequences) -- maximum possible value for distance and similarity. For any sequence: distance + similarity == maximum.
  4. .normalized_distance(*sequences) -- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.
  5. .normalized_similarity(*sequences) -- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

  1. qval -- q-value for split sequences into q-grams. Possible values:
    • 1 (default) -- compare sequences by chars.
    • 2 or more -- transform sequences to q-grams.
    • None -- split sequences by words.
  2. as_set -- for token-based algorithms:
    • True -- t and ttt is equal.
    • False (default) -- t and ttt is different.

Examples

For example, Hamming distance:

import textdistance

textdistance.hamming('test', 'text')
# 1

textdistance.hamming.distance('test', 'text')
# 1

textdistance.hamming.similarity('test', 'text')
# 3

textdistance.hamming.normalized_distance('test', 'text')
# 0.25

textdistance.hamming.normalized_similarity('test', 'text')
# 0.75

textdistance.Hamming(qval=2).distance('test', 'text')
# 2

Any other algorithms have same interface.

Articles

A few articles with examples how to use textdistance in the real world:

Extra libraries

For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install textdistance with extras for this feature.

You can disable this by passing external=False argument on init:

import textdistance
hamming = textdistance.Hamming(external=False)
hamming('text', 'testit')
# 3

Supported libraries:

  1. abydos
  2. Distance
  3. jellyfish
  4. py_stringmatching
  5. pylev
  6. python-Levenshtein
  7. pyxDamerauLevenshtein

Algorithms:

  1. DamerauLevenshtein
  2. Hamming
  3. Jaro
  4. JaroWinkler
  5. Levenshtein

Benchmarks

Without extras installation:

algorithm library function time
DamerauLevenshtein jellyfish damerau_levenshtein_distance 0.00965294
DamerauLevenshtein pyxdameraulevenshtein damerau_levenshtein_distance 0.151378
DamerauLevenshtein pylev damerau_levenshtein 0.766461
DamerauLevenshtein textdistance DamerauLevenshtein 4.13463
DamerauLevenshtein abydos damerau_levenshtein 4.3831
Hamming Levenshtein hamming 0.0014428
Hamming jellyfish hamming_distance 0.00240262
Hamming distance hamming 0.036253
Hamming abydos hamming 0.0383933
Hamming textdistance Hamming 0.176781
Jaro Levenshtein jaro 0.00313561
Jaro jellyfish jaro_distance 0.0051885
Jaro py_stringmatching jaro 0.180628
Jaro textdistance Jaro 0.278917
JaroWinkler Levenshtein jaro_winkler 0.00319735
JaroWinkler jellyfish jaro_winkler 0.00540443
JaroWinkler textdistance JaroWinkler 0.289626
Levenshtein Levenshtein distance 0.00414404
Levenshtein jellyfish levenshtein_distance 0.00601647
Levenshtein py_stringmatching levenshtein 0.252901
Levenshtein pylev levenshtein 0.569182
Levenshtein distance levenshtein 1.15726
Levenshtein abydos levenshtein 3.68451
Levenshtein textdistance Levenshtein 8.63674

Total: 24 libs.

Yeah, so slow. Use TextDistance on production only with extras.

Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).

You can run benchmark manually on your system:

pip install textdistance[benchmark]
python3 -m textdistance.benchmark

TextDistance show benchmarks results table for your system and save libraries priorities into libraries.json file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default libraries.json already included in package.

Running tests

You can run tests via dephell:

curl -L dephell.org/install | python3
dephell venv create --env=pytest-external
dephell deps install --env=pytest-external
dephell venv run --env=pytest-external

Contributing

PRs are welcome!

  • Found a bug? Fix it!
  • Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
  • Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
  • Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
  • Have no time to code? Tell your friends and subscribers about textdistance. More users, more contributions, more amazing features.

Thank you ❤️

Comments
  • add support for rapidfuzz

    add support for rapidfuzz

    The implementation used by rapidfuzz has the following algorithms

    • Jaro/JaroWinkler (fastest by a large margin)
    • Hamming (slightly slower than python-Levenshtein)
    • Levenshtein (similar fast to python-Levenshtein for very short strings and fastest for longer strings)

    Additionally it supports any sequence of hashable types (e.g. lists of strings) and not only text

    Here is the benchmark result:

    # Faster than textdistance:
    
    | algorithm          | library                 | function                     |        time |
    |--------------------+-------------------------+------------------------------+-------------|
    | DamerauLevenshtein | jellyfish               | damerau_levenshtein_distance | 0.0181046   |
    | DamerauLevenshtein | pyxdameraulevenshtein   | damerau_levenshtein_distance | 0.030925    |
    | Hamming            | Levenshtein             | hamming                      | 0.000351586 |
    | Hamming            | rapidfuzz.string_metric | hamming                      | 0.00040442  |
    | Hamming            | jellyfish               | hamming_distance             | 0.0143502   |
    | Jaro               | rapidfuzz.string_metric | jaro_similarity              | 0.000749048 |
    | Jaro               | jellyfish               | jaro_similarity              | 0.0152322   |
    | JaroWinkler        | rapidfuzz.string_metric | jaro_winkler_similarity      | 0.000776006 |
    | JaroWinkler        | jellyfish               | jaro_winkler_similarity      | 0.0157833   |
    | Levenshtein        | rapidfuzz.string_metric | levenshtein                  | 0.0010058   |
    | Levenshtein        | Levenshtein             | distance                     | 0.00103176  |
    | Levenshtein        | jellyfish               | levenshtein_distance         | 0.0147382   |
    | Levenshtein        | pylev                   | levenshtein                  | 0.14116     |
    Total: 13 libs.
    

    and the benchmark results when adding slightly longer strings:

    STMT = """
    func('text', 'test')
    func('qwer', 'asdf')
    func('a' * 15, 'b' * 15)
    func('a' * 30, 'b' * 30)
    """
    
    # Faster than textdistance:
    
    | algorithm          | library                 | function                     |        time |
    |--------------------+-------------------------+------------------------------+-------------|
    | DamerauLevenshtein | jellyfish               | damerau_levenshtein_distance | 0.0323887   |
    | DamerauLevenshtein | pyxdameraulevenshtein   | damerau_levenshtein_distance | 0.143235    |
    | Hamming            | Levenshtein             | hamming                      | 0.000489837 |
    | Hamming            | rapidfuzz.string_metric | hamming                      | 0.000517879 |
    | Hamming            | jellyfish               | hamming_distance             | 0.0182341   |
    | Jaro               | rapidfuzz.string_metric | jaro_similarity              | 0.00111363  |
    | Jaro               | jellyfish               | jaro_similarity              | 0.0201971   |
    | JaroWinkler        | rapidfuzz.string_metric | jaro_winkler_similarity      | 0.00105238  |
    | JaroWinkler        | jellyfish               | jaro_winkler_similarity      | 0.0206678   |
    | Levenshtein        | rapidfuzz.string_metric | levenshtein                  | 0.00138601  |
    | Levenshtein        | Levenshtein             | distance                     | 0.0034889   |
    | Levenshtein        | jellyfish               | levenshtein_distance         | 0.0232467   |
    | Levenshtein        | pylev                   | levenshtein                  | 0.599603    |
    Total: 13 libs.
    
    opened by maxbachmann 13
  • Add new DamerauLevenshtein... classes

    Add new DamerauLevenshtein... classes

    There are two versions of the Damerau-Levenshtein distance, as described in this Debian bug report: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1018933 Some of the external libraries implement one of them, others the other.

    This PR splits introduces two different classes: DamerauLevenshteinRestricted and DamerauLevenshteinUnrestricted, with DamerauLevenshtein being the unrestricted version, so that it is clear what is intended.

    opened by juliangilbey 7
  • Ignore inconsistent timings on some comparison tests

    Ignore inconsistent timings on some comparison tests

    Two particular tests have timings that differ wildly between successive runs on arm64 architectures. This might be because some libraries take a long time to load or something like that - I don't know. But this patch turns off hypothesis's timing checks for these two tests. I'm going to apply it to Debian's package; you might or might not want to apply it upstream.

    opened by juliangilbey 5
  • Modify JaroWinkler boosting to match behaviour of jellyfish algorithm

    Modify JaroWinkler boosting to match behaviour of jellyfish algorithm

    Jellyfish has recently modified its JaroWinkler algorithm to allow for boosting even when one of the strings is shorter than 4 characters: https://github.com/jamesturk/jellyfish/commit/87f9679910eba0dad6a1f6019f03cbdffba28392. It is very unclear whether this is a good idea or not. But as it is, the tests now fail, as the internal and external algorithms give different results on a pair of strings such as ":" and ":0".

    This patch replicates the change that jellyfish has made, which will then allow the external tests to pass once again. It also modifies the expected value of the comparison "fog" and "frog" to match this new algorithm behaviour.

    If you do not wish to apply this patch, then the external tests will need modifying to exclude the case where either of the strings has length < 4.

    hacktoberfest-accepted 
    opened by juliangilbey 5
  • Possible correction to Monge-Elkan calculation

    Possible correction to Monge-Elkan calculation

    Might be wrong about this, but think the code for the Monge-Elkan algorithm needs to be corrected.

    If you look at the implementation in the py_stringmatching library on line 81 of https://github.com/anhaidgroup/py_stringmatching/blob/master/py_stringmatching/similarity_measure/monge_elkan.py sim = float(sum_of_maxes) / float(len(bag1)) which is essentially the mean max.

    But in the implementation for textdistance, the score is given on line 222 of https://github.com/life4/textdistance/blob/master/textdistance/algorithms/token_based.py as
    sum(maxes) / len(seq) / len(maxes)

    I think the further division by len(maxes) isn't needed, and the line should just be sum(maxes) / len(seq)

    The change in the code could mess up tests elsewhere, so I'm not changing anything else. But thought I should bring this to your attention.

    Below is some code and differing scores I got in textdistance and py_stringmatching.

    # score in textdistance
    from textdistance import MongeElkan, levenshtein
    ALG = MongeElkan
    score = ALG(algorithm=levenshtein,qval=None,symmetric=False).similarity('Good Times!', "The Good Times and The Bad Ones")
    score
    # Got 2.25
    
    #score in py_stringmatching
    from py_stringmatching import MongeElkan
    from py_stringmatching import Levenshtein as Levenshtein_2
    ALG_2 = MongeElkan(sim_func=Levenshtein_2().get_raw_score)
    source = 'Good Times!'
    source_split = source.split()
    target = "The Good Times and The Bad Ones"
    target_split = target.split()
    score2 = ALG_2.get_raw_score(source_split, target_split)
    score2
    # got 5.5
    
    opened by shijithpk 3
  • Handle newer versions of abydos and jellyfish

    Handle newer versions of abydos and jellyfish

    abydos has changed its interface for distance metrics quite significantly, and jellyfish has changed the names of the functions. This patch addresses both of these issues.

    opened by juliangilbey 3
  • Ensure that maximum normalised distance is <= 1 and ...

    Ensure that maximum normalised distance is <= 1 and ...

    textdistance is currently failing its test-suite on arm64 machines with Python 3.10, which is causing me problems on Debian. I have managed to track down the first of these bugs (and there are at least two more to come): there are some algorithms that use upper() before comparing the strings. As noted in the code already, though these algorithms were designed for English (ASCII only), this can cause upper() to change the length of the string if using non-English characters. And hypothesis does this when testing. This can result in the normalised distance being greater than 1. This patch addresses this by ensuring that the distance returned from the relevant algorithms is no greater than self.maximum().

    A second issue which arose when doing this was calculating the maximum distance for Editex(); the current function for calculating the maximum does not give the correct answer if match_cost > mismatch_cost, for example. But this would be a silly situation: why would we penalise matching characters more than mismatching ones? There are two ways of resolving this: the first is to calculate the maximum distance using max(match_cost, group_cost, mismatch_cost), the second is to force the inequalities match_cost <= group_cost <= mismatch_cost. I have gone for the latter option in this patch.

    All being well, there will be more patches to come in the next few weeks as I get to the bottom of them!

    opened by juliangilbey 2
  • update rapidfuzz

    update rapidfuzz

    update rapidfuzz to the latest version which provides a damerau levenshtein implementation. It is the fastest of the supported libraries:

    | algorithm          | library                               | function                     |        time |
    |--------------------+---------------------------------------+------------------------------+-------------|
    | DamerauLevenshtein | rapidfuzz.distance.DamerauLevenshtein | distance                     | 0.00267046  |
    | DamerauLevenshtein | jellyfish                             | damerau_levenshtein_distance | 0.022479    |
    | DamerauLevenshtein | pyxdameraulevenshtein                 | damerau_levenshtein_distance | 0.0393475   |
    | DamerauLevenshtein | **textdistance**                      | DamerauLevenshtein           | 0.589098    |
    

    In addition it is the only implementation which only requires linear memory.

    opened by maxbachmann 1
  • Fix numpy types warnings

    Fix numpy types warnings

    Basic types have been deprecated in numpy 1.20. Here are the full warnings:

    DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    

    I don’t know the code enough to assess if the specific numpy types are required though.

    opened by ArchangeGabriel 1
  • Fix a setuptools warning

    Fix a setuptools warning

    UserWarning: Usage of dash-separated 'description-file' will not be supported in future versions. Please use the underscore name 'description_file' instead

    opened by ArchangeGabriel 1
  • Fix README links

    Fix README links

    Hi,

    Noticed that the Travis CI link was wrong. Then found a few more links that appear to reference an old repository.

    This PR tries to correct the links by replacing orsinium by life4 in some URL's.

    And thanks for the great project, Bruno

    opened by kinow 1
Releases(4.5.0)
Owner
Life4
Original cool Open Source projects
Life4
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023