Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

Overview

VILLA: Vision-and-Language Adversarial Training

This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports adversarial finetuning of UNITER on VQA, VCR, NLVR2, and SNLI-VE. Adversarial pre-training with in-domain data will be available soon. Both VILLA-base and VILLA-large pre-trained checkpoints are released.

Overview of VILLA

Most of the code in this repo are copied/modified from UNITER.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained VILLA checkpoints. This will download both the base and large models.

We use VQA as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_vqa.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── finetune 
    ├── img_db
    │   ├── coco_test2015
    │   ├── coco_test2015.tar
    │   ├── coco_train2014
    │   ├── coco_train2014.tar
    │   ├── coco_val2014
    │   ├── coco_val2014.tar
    │   ├── vg
    │   └── vg.tar
    ├── pretrained
        ├── uniter-base.pt
    │   └── villa-base.pt
    └── txt_db
        ├── vqa_devval.db
        ├── vqa_devval.db.tar
        ├── vqa_test.db
        ├── vqa_test.db.tar
        ├── vqa_train.db
        ├── vqa_train.db.tar
        ├── vqa_trainval.db
        ├── vqa_trainval.db.tar
        ├── vqa_vg.db
        └── vqa_vg.db.tar
    
    

    You can put different pre-trained checkpoints inside the /pretrained folder based on your need.

  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the VQA task.

    # inside the container
    horovodrun -np $N_GPU python train_vqa_adv.py --config $YOUR_CONFIG_JSON
    
    # specific example
    horovodrun -np 4 python train_vqa_adv.py --config config/train-vqa-base-4gpu-adv.json
  4. Run inference for the VQA task and then evaluate.

    # inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
    --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16

    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

  5. Customization

    # training options
    python train_vqa_adv.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
    • --checkpoint selects UNITER or VILLA pre-trained checkpoints
    • --adv_training decides using adv. training or not
    • --adv_modality takes values from ['text'], ['image'], ['text','image'], and ['text','image','alter'], the last two correspond to adding perturbations on two modalities simultaneously or alternatively

Downstream Tasks Finetuning

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr_adv.py --config config/train-vcr-base-4gpu-adv.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evaluation.

NLVR2

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_nlvr2_adv.py --config config/train-nlvr2-base-1gpu-adv.json \
        --output_dir $NLVR2_EXP
    
  3. inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
    --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve_adv.py --config config/train-ve-base-2gpu-adv.json \
        --output_dir $VE_EXP
    

Adversarial Training of LXMERT

To keep things simple, we provide another separate repo that can be used to reproduce our results on adversarial finetuning of LXMERT on VQA, GQA, and NLVR2.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{gan2020large,
  title={Large-Scale Adversarial Training for Vision-and-Language Representation Learning},
  author={Gan, Zhe and Chen, Yen-Chun and Li, Linjie and Zhu, Chen and Cheng, Yu and Liu, Jingjing},
  booktitle={NeurIPS},
  year={2020}
}

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022