Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Overview

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Official implementation of the Efficient Conformer, progressively downsampled Conformer with grouped attention for Automatic Speech Recognition.

Efficient Conformer Encoder

Inspired from previous works done in Automatic Speech Recognition and Computer Vision, the Efficient Conformer encoder is composed of three encoder stages where each stage comprises a number of Conformer blocks using grouped attention. The encoded sequence is progressively downsampled and projected to wider feature dimensions, lowering the amount of computation while achieving better performance. Grouped multi-head attention reduce attention complexity by grouping neighbouring time elements along the feature dimension before applying scaled dot-product attention.

Installation

Clone GitHub repository and set up environment

git clone https://github.com/burchim/EfficientConformer.git
cd EfficientConformer
pip install -r requirements.txt

Install ctcdecode

Download LibriSpeech

Librispeech is a corpus of approximately 1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned.

cd datasets
./download_LibriSpeech.sh

Running an experiment

You can run an experiment by providing a config file using the '--config_file' flag. Training checkpoints and logs will be saved in the callback folder specified in the config file. Note that '--prepare_dataset' and '--create_tokenizer' flags may be needed for your first experiment.

python main.py --config_file configs/config_file.json

Evaluation

Models can be evaluated by selecting a subset validation/test mode and by providing the epoch/name of the checkpoint to load for evaluation with the '--initial_epoch' flag. The '--gready' flag designates whether to use gready search or beam search decoding for evaluation.

python main.py --config_file configs/config_file.json --initial_epoch epoch/name --mode validation/test --gready

Options

-c / --config_file		type=str   default="configs/EfficientConformerCTCSmall.json"	help="Json configuration file containing model hyperparameters"
-m / --mode                	type=str   default="training"                               	help="Mode : training, validation-clean, test-clean, eval_time-dev-clean, ..."
-d / --distributed         	action="store_true"                                            	help="Distributed data parallelization"
-i / --initial_epoch  		type=str   default=None                                       	help="Load model from checkpoint"
--initial_epoch_lm         	type=str   default=None                                       	help="Load language model from checkpoint"
--initial_epoch_encoder    	type=str   default=None                                       	help="Load model encoder from encoder checkpoint"
-p / --prepare_dataset		action="store_true"                                            	help="Prepare dataset before training"
-j / --num_workers        	type=int   default=8                                          	help="Number of data loading workers"
--create_tokenizer         	action="store_true"                                            	help="Create model tokenizer"
--batch_size_eval      		type=int   default=8                                          	help="Evaluation batch size"
--verbose_val              	action="store_true"                                            	help="Evaluation verbose"
--val_steps                	type=int   default=None                                       	help="Number of validation steps"
--steps_per_epoch      		type=int   default=None                                       	help="Number of steps per epoch"
--world_size               	type=int   default=torch.cuda.device_count()                  	help="Number of available GPUs"
--cpu                      	action="store_true"                                            	help="Load model on cpu"
--show_dict            		action="store_true"                                            	help="Show model dict summary"
--swa                      	action="store_true"                                            	help="Stochastic weight averaging"
--swa_epochs               	nargs="+"   default=None                                       	help="Start epoch / end epoch for swa"
--swa_epochs_list      		nargs="+"   default=None                                       	help="List of checkpoints epochs for swa"
--swa_type                   	type=str   default="equal"                                    	help="Stochastic weight averaging type (equal/exp)"
--parallel                   	action="store_true"                                            	help="Parallelize model using data parallelization"
--rnnt_max_consec_dec_steps  	type=int   default=None                                       	help="Number of maximum consecutive transducer decoder steps during inference"
--eval_loss                  	action="store_true"                                            	help="Compute evaluation loss during evaluation"
--gready                     	action="store_true"                                            	help="Proceed to a gready search evaluation"
--saving_period              	type=int   default=1                                          	help="Model saving every 'n' epochs"
--val_period                 	type=int   default=1                                          	help="Model validation every 'n' epochs"
--profiler                   	action="store_true"                                            	help="Enable eval time profiler"

Monitor training

tensorboard --logdir callback_path

LibriSpeech Performance

Model Size Type Params (M) test-clean/test-other gready WER (%) test-clean/test-other n-gram WER (%) GPUs
Efficient Conformer Small CTC 13.2 3.6 / 9.0 2.7 / 6.7 4 x RTX 2080 Ti
Efficient Conformer Medium CTC 31.5 3.0 / 7.6 2.4 / 5.8 4 x RTX 2080 Ti
Efficient Conformer Large CTC 125.6 2.5 / 5.8 2.1 / 4.7 4 x RTX 3090

Reference

Maxime Burchi, Valentin Vielzeuf. Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition.

Author

Owner
Maxime Burchi
Master of Engineering in Computer Science, ESIEE Paris
Maxime Burchi
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022