[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

Overview

DiffHand

This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021).

In this paper, we propose a fully differentiable pipeline to jointly optimize the morphology and control of manipulator robots. At the core of the framework is a deformation-based morphology parameterization and a differentiable simulation.

The framework itself is general and not limited to manipulator robots, we select the case study of manipulator robots because of its complexity and contact-rich nature. Welcome to try our code on any other types robots as well.

teaser

Installation

We provides two methods for installation of the code. Install on local machine and Install by Docker.

Option 1: Install on Local Machine

Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04

  1. Clone the project from github: git clone https://github.com/eanswer/DiffHand.git --recursive .

  2. Install CMake >= 3.1.0: official instruction for cmake installation

  3. build conda environment and install simulation

    cd DiffHand
    conda env create -f environment.yml
    conda activate diffhand
    cd core
    python setup.py install
    
  4. Test the installation

    cd examples
    python test_redmax.py
    

    If you see a simulation rendering with a two-link pendulum as below, you have successfully installed the code base.

    test_redmax

Option 2: Install by Docker

We provide a docker installation in the docker folder. Follow the readme instruction in docker folder to complete the installation.

Code Structure

There are two main components of the code base:

  • Differentiable RedMax: DiffHand/core. The differentiable redmax is based off RedMax and further makes if fully differentiable. It provides the simulation derivatives w.r.t. both simulation parameters (kinematics- and dynamics-related parameter) and control actions. It is implemented in C++ for computing efficiency. We provide a simulation document for mathematical details of our differentiable RedMax.
  • Morphology and Control Co-Optimization: DiffHand/examples. We build an end-to-end differentiable framework to co-optimize both the morphology and control of manipulators. We use L-BFGS-B as our default gradient-based optimizer and also provides the source code for the gradient-free baseline methods.

Run the Code

It is recommended to try out the scripts in play with redmax simulation first if you would like to get familiar with simulation interface.

Run the examples in the paper

We include the four co-design tasks from the paper in the examples folder.

  • Finger Reach
  • Rotate Cube
  • Flip Box
  • Assemble

To run the L-BFGS-B optimization with our deformation-based design parameterization, you can enter the corresponding folder and run demo.sh under the folder. For example, to run Finger Reach,

cd examples/rss_finger_reach
bash demo.sh

Run batch experiments of baseline algorithms

We include the gradient-free baselines (except RL) and the control-only baseline in this repository. For the RL baseline, we use the released code from Luck et al with some modifications to our proposed morphology parameterization.

To run the baseline algorithms or our method in a batch mode, enter the corresponding folder and run run_batch_experiments.py. For example, to run Flip Cube with CMA-ES,

cd examples/rss_finger_flip
python run_batch_experiments.py --method CMA --num-seeds 5 --num-processes 5 --save-dir ./results/

Play with redmax simulation

We provide several examples to test the forward simulation and its differentiability.

  • examples/test_redmax.py provides the script to show how to run forward simulation and rendering. It can be easily executed by:

    python test_redmax.py --model hand_sphere
    

    Here, you can also try other models provided in assets folder (models are described by xml configuration files).

  • examples/test_finger_flick_optimize.py provides an example for using the backward gradients of the simulation. In this example, we use gradient-based optimization to optimize the control sequence of a pendulum finger model to flick a cube to a target location. run it by:

    python test_finger_flick_optimize.py
    

    The initial control sequence is shown first and you can press [Esc] to close the rendering and start the optimization. After successful optimization, you will see a rendering as below:

    finger_flick

Citation

If you find our paper or code is useful, please consider citing:

@INPROCEEDINGS{Xu-RSS-21, 
    AUTHOR    = {Jie Xu AND Tao Chen AND Lara Zlokapa AND Michael Foshey AND Wojciech Matusik AND Shinjiro Sueda AND Pulkit Agrawal}, 
    TITLE     = {{An End-to-End Differentiable Framework for Contact-Aware Robot Design}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2021}, 
    ADDRESS   = {Virtual}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2021.XVII.008} 
} 
You might also like...
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Spatial Action Maps for Mobile Manipulation (RSS 2020)
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Repository for the paper
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Official implementation of
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

Comments
  • Simulation replay takes forever

    Simulation replay takes forever

    Thank you for the great work!

    I am trying to get familiar with RedMaxDiff and noticed that rendering simulated trajectories takes forever (<=1 fps for hand-sphere). Whereas, simulating itself is very fast (471 fps for hand-sphere and 10k+ fps for finger-torque).

    Is that normal? Am I doing something wrong?

    Best, Mikel

    opened by jotix16 0
Releases(DiffHand)
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023