PyTorch ,ONNX and TensorRT implementation of YOLOv4

Overview

Pytorch-YOLOv4

A minimal PyTorch implementation of YOLOv4.

├── README.md
├── dataset.py            dataset
├── demo.py               demo to run pytorch --> tool/darknet2pytorch
├── demo_darknet2onnx.py  tool to convert into onnx --> tool/darknet2pytorch
├── demo_pytorch2onnx.py  tool to convert into onnx
├── models.py             model for pytorch
├── train.py              train models.py
├── cfg.py                cfg.py for train
├── cfg                   cfg --> darknet2pytorch
├── data            
├── weight                --> darknet2pytorch
├── tool
│   ├── camera.py           a demo camera
│   ├── coco_annotation.py       coco dataset generator
│   ├── config.py
│   ├── darknet2pytorch.py
│   ├── region_loss.py
│   ├── utils.py
│   └── yolo_layer.py

image

0. Weights Download

0.1 darknet

0.2 pytorch

you can use darknet2pytorch to convert it yourself, or download my converted model.

1. Train

use yolov4 to train your own data

  1. Download weight

  2. Transform data

    For coco dataset,you can use tool/coco_annotation.py.

    # train.txt
    image_path1 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    image_path2 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ...
    ...
    ...
    
  3. Train

    you can set parameters in cfg.py.

     python train.py -g [GPU_ID] -dir [Dataset direction] ...
    

2. Inference

2.1 Performance on MS COCO dataset (using pretrained DarknetWeights from https://github.com/AlexeyAB/darknet)

ONNX and TensorRT models are converted from Pytorch (TianXiaomo): Pytorch->ONNX->TensorRT. See following sections for more details of conversions.

  • val2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.471 0.710 0.510 0.278 0.525 0.636
Pytorch (TianXiaomo) 0.466 0.704 0.505 0.267 0.524 0.629
TensorRT FP32 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.637
TensorRT FP16 + BatchedNMSPlugin 0.472 0.708 0.511 0.273 0.530 0.636
  • testdev2017 dataset (input size: 416x416)
Model type AP AP50 AP75 APS APM APL
DarkNet (YOLOv4 paper) 0.412 0.628 0.443 0.204 0.444 0.560
Pytorch (TianXiaomo) 0.404 0.615 0.436 0.196 0.438 0.552
TensorRT FP32 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.564
TensorRT FP16 + BatchedNMSPlugin 0.412 0.625 0.445 0.200 0.446 0.563

2.2 Image input size for inference

Image input size is NOT restricted in 320 * 320, 416 * 416, 512 * 512 and 608 * 608. You can adjust your input sizes for a different input ratio, for example: 320 * 608. Larger input size could help detect smaller targets, but may be slower and GPU memory exhausting.

height = 320 + 96 * n, n in {0, 1, 2, 3, ...}
width  = 320 + 96 * m, m in {0, 1, 2, 3, ...}

2.3 Different inference options

  • Load the pretrained darknet model and darknet weights to do the inference (image size is configured in cfg file already)

    python demo.py -cfgfile <cfgFile> -weightfile <weightFile> -imgfile <imgFile>
  • Load pytorch weights (pth file) to do the inference

    python models.py <num_classes> <weightfile> <imgfile> <IN_IMAGE_H> <IN_IMAGE_W> <namefile(optional)>
  • Load converted ONNX file to do inference (See section 3 and 4)

  • Load converted TensorRT engine file to do inference (See section 5)

2.4 Inference output

There are 2 inference outputs.

  • One is locations of bounding boxes, its shape is [batch, num_boxes, 1, 4] which represents x1, y1, x2, y2 of each bounding box.
  • The other one is scores of bounding boxes which is of shape [batch, num_boxes, num_classes] indicating scores of all classes for each bounding box.

Until now, still a small piece of post-processing including NMS is required. We are trying to minimize time and complexity of post-processing.

3. Darknet2ONNX

  • This script is to convert the official pretrained darknet model into ONNX

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_darknet2onnx.py <cfgFile> <weightFile> <imageFile> <batchSize>

3.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

4. Pytorch2ONNX

  • You can convert your trained pytorch model into ONNX using this script

  • Pytorch version Recommended:

    • Pytorch 1.4.0 for TensorRT 7.0 and higher
    • Pytorch 1.5.0 and 1.6.0 for TensorRT 7.1.2 and higher
  • Install onnxruntime

    pip install onnxruntime
  • Run python script to generate ONNX model and run the demo

    python demo_pytorch2onnx.py <weight_file> <image_path> <batch_size> <n_classes> <IN_IMAGE_H> <IN_IMAGE_W>

    For example:

    python demo_pytorch2onnx.py yolov4.pth dog.jpg 8 80 416 416

4.1 Dynamic or static batch size

  • Positive batch size will generate ONNX model of static batch size, otherwise, batch size will be dynamic
    • Dynamic batch size will generate only one ONNX model
    • Static batch size will generate 2 ONNX models, one is for running the demo (batch_size=1)

5. ONNX2TensorRT

  • TensorRT version Recommended: 7.0, 7.1

5.1 Convert from ONNX of static Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> --explicitBatch --saveEngine=<tensorRT_engine_file> --workspace=<size_in_megabytes> --fp16
    • Note: If you want to use int8 mode in conversion, extra int8 calibration is needed.

5.2 Convert from ONNX of dynamic Batch size

  • Run the following command to convert YOLOv4 ONNX model into TensorRT engine

    trtexec --onnx=<onnx_file> \
    --minShapes=input:<shape_of_min_batch> --optShapes=input:<shape_of_opt_batch> --maxShapes=input:<shape_of_max_batch> \
    --workspace=<size_in_megabytes> --saveEngine=<engine_file> --fp16
  • For example:

    trtexec --onnx=yolov4_-1_3_320_512_dynamic.onnx \
    --minShapes=input:1x3x320x512 --optShapes=input:4x3x320x512 --maxShapes=input:8x3x320x512 \
    --workspace=2048 --saveEngine=yolov4_-1_3_320_512_dynamic.engine --fp16

5.3 Run the demo

python demo_trt.py <tensorRT_engine_file> <input_image> <input_H> <input_W>
  • This demo here only works when batchSize is dynamic (1 should be within dynamic range) or batchSize=1, but you can update this demo a little for other dynamic or static batch sizes.

  • Note1: input_H and input_W should agree with the input size in the original ONNX file.

  • Note2: extra NMS operations are needed for the tensorRT output. This demo uses python NMS code from tool/utils.py.

6. ONNX2Tensorflow

7. ONNX2TensorRT and DeepStream Inference

  1. Compile the DeepStream Nvinfer Plugin
    cd DeepStream
    make 
  1. Build a TRT Engine.

For single batch,

trtexec --onnx= --explicitBatch --saveEngine= --workspace= --fp16

For multi-batch,

trtexec --onnx= --explicitBatch --shapes=input:Xx3xHxW --optShapes=input:Xx3xHxW --maxShapes=input:Xx3xHxW --minShape=input:1x3xHxW --saveEngine= --fp16

Note :The maxShapes could not be larger than model original shape.

  1. Write the deepstream config file for the TRT Engine.

Reference:

@article{yolov4,
  title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
  author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
  journal = {arXiv},
  year={2020}
}
Owner
DL CV OCR and algorithm optimization
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023