a morph transfer UGATIT for image translation.

Overview

Morph-UGATIT

a morph transfer UGATIT for image translation.

image image image image

Introduction

中文技术文档

This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation".

Additionally, I DIY the model by adding two modules, a MLP module to learn a latent zone and an identity preserving loss. These two factors make UGATIT to achieve a progressive domain transfer for image translation. I call this method Morph UGATIT.

My work has two aspects:

  • Firstly, according to official TensorFlow code of UGATIT, I use PyTorch to reimplement it, very close to original TF model including network, training hyper parameters.
  • I add a MLP module, introducing a latent code for generator. And an identity preserving loss is used to learn more common feature for different domains.

I train model on two datasets, "adult2child" and "selfie2anime".

Requirements

  • python3.7
  • Pytorch >= 1.6
  • dlib. Before installing dlib, you should install Cmake and Boost
pip install Cmake
pip install Boost
pip install dlib
  • other common-used libraries.

How to Use

There are many models in my repo, but you just need two models and corresponding python script files.

  • UGATIT: "configs/cfgs_ugatit.py", "models/ugatit.py", "tool/train_ugatit.py", "tool/demo_ugatit.py"
  • Morph UGATIT: "configs/cfgs_s_ugatit_plus.py", "models/s_ugatit_plus.py", "tool/train_s_ugatit_plus.py", "tool/demo_morph_ugatit.py"

train step

  1. getting dataset. The "adult2child" dataset comes from G-Lab, which is generated by StyleGAN. You can download here image

The "selfie2anime" dataset comes from official UGATIT repo.

  1. set configurations. configuration files can be found "configs" dir. You just focus on "cfgs_ugatit.py" and "cfgs_s_ugatit_plus.py". Please change:
  • dirA: domain A dataset path.
  • dirB: domain B dataset path.
  • anime: whether dataset is "selfie2anime".
  • tensorboard: tensorboard log path.
  • saved_dir: save model weight into "saved_dir".
  1. start to train.
cd tool
python train_ugatit.py   # ugatit
python train_s_ugatit_plus.py   #  morph ugatit

you can also use tensorboard to check loss curves and some visualizations.

evaluation step

Since dlib is necessary, you should download dlib model weight here. change "alignment_loc" at "tool/demo_xxxx.py". "xxx" means "ugatit" or "morph_ugatit" to your dlib model weight path. Then put a test image into a dir.

cd tool
python demo_ugatit.py --type ugatit --resume ${ckpt path}$ --input ${image dir}$ --saved-dir ${result location}$ --align
python demo_morph_ugatit.py --resume ${ckpt path}$ --input ${image dir}$ --saved-dir ${result location}$ --align

Note: if you want to try "selfie2anime", please add a extra term "--anime".

Here I provide my pretrained model weights.

for "adult2child" dataset

ugatit

morph ugatit

for "selfie2anime" dataset

ugatit

More results can be seen here

References

  • official UGATIT repo
  • official CycleGAN repo
  • GLab, http://www.seeprettyface.com/
  • paper "Lifespan age transformation synthesis" and its' official code.
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022