This repository implements WGAN_GP.

Overview

Image_WGAN_GP

This repository implements WGAN_GP.

Image_WGAN_GP

This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you can download the datasets from main.py .

requirements

Before you run the code, you should install following packages for your environment.

You can see it in the requirements.txt.

install

pip install -r requirements.txt

torch>=0.4.0
torchvision
matplotlib
numpy
scipy
pillow
urllib3
scikit-image

Prepare the dataset

Before you run the code, you should prepare the dataset. You must replace the ROOT_PATH in main.py with your own path.

ROOT_PATH = '../..' # for linux
ROOT_PATH = 'D:/code/Image_WGAN_GP'  # for windows and change it into your work directory!

We provide the mnist , fashionmnist and cifar10 datasets. But you can download others , when you run the code. For example , download the cifar100, just add the following code in main.py and you should modify the models(We will finish it later).

opt.dataset == 'cifar100':
    os.makedirs(ROOT_PATH + "/data/cifar100", exist_ok=True)
    dataloader = torch.utils.data.DataLoader(
        datasets.CIFAR100(
            ROOT_PATH + "/data/cifar100",
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
            ),
        ),
        batch_size=opt.batch_size,
        shuffle=True,
    )

The data will be saved in data directory.

Training

Using mnist dataset.

python main.py -data 'mnist' -n_epochs 300

Using fashionmnist dataset.

python main.py -data 'fashionmnist' -n_epochs 300

The generated images will be saved in images directory.

Training parameters

You can see details in config.py

"--n_epochs", "number of epochs of training"

"--batch_size", "size of the batches"

"--lr","adam: learning rate"

"--b1","adam: decay of first order momentum of gradient"

"--b2", "adam: decay of first order momentum of gradient"

"--n_cpu", "number of cpu threads to use during batch generation"

"--latent_dim", "dimensionality of the latent space"

"--img_size", "size of each image dimension"

"--channels","number of image channels"

"--n_critic", "number of training steps for discriminator per iter"

"--clip_value","lower and upper clip value for disc. weights"

"--sample_interval", "interval betwen image samples"

'--exp_name', 'output folder name; will be automatically generated if not specified'

'--pretrain_iterations', 'iterations for pre-training'

'--pretrain', 'if performing pre-training'

'--dataset', '-data', choices=['mnist', 'fashionmnist', 'cifar10']

Save params

The parameters will be save in results. And you can change the saving directory name in config.py

Wasserstein GAN GP

Improved Training of Wasserstein GANs

Authors

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville

Abstract

Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

[Paper]

wgan_gp

Owner
Lieon
Deep learning, Anomaly detection,Time series, Generative Adversarial Networks.
Lieon
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022