E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

Related tags

Deep Learninge2ec
Overview

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

city

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
Tao Zhang, Shiqing Wei, Shunping Ji
CVPR 2022

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md.

Performances

We re-tested the speed on a single RTX3090.

Dtataset AP Image size FPS
SBD val 59.2 512×512 59.60
COCO test-dev 33.8 original size 35.25
KINS val 34.0 768×2496 12.39
Cityscapes val 34.0 1216×2432 8.58

The accuracy and inference speed of the contours at different stages on SBD val set. We also re-tested the speed on a single RTX3090.

stage init coarse final final-dml
AP 51.4 55.9 58.8 59.2
FPS 101.73 91.35 67.48 59.6

The accuracy and inference speed of the contours at different stages on coco val set.

stage init coarse final final-dml
AP 27.8 31.6 33.5 33.6
FPS 80.97 72.81 42.55 35.25

Testing

Testing on COCO

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the COCO dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True
    # testing detection accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --eval bbox
    # testing the speed
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # testing on coco test-dev set, run and submit data/result/results.json
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --dataset coco_test
    

Testing on SBD

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the SBD dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth
    # testing detection accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth --eval bbox
    # testing the speed
    python test.py sbd --checkpoint /path/to/model_sbd.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py sbd --checkpoint /path/to/model_sbd.pth --stage coarse
    

Testing on KINS

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    Maybe you will find some troules, such as object of type <class 'numpy.float64'> cannot be safely interpreted as an integer. Please modify the /path/to/site-packages/pycocotools/cooceval.py. Replace np.round((0.95 - .5) / .05) in lines 506 and 507 with int(np.round((0.95 - .5) / .05)).

    # testing segmentation accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth
    # testing detection accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth --eval bbox
    # testing the speed
    python test.py kitti --checkpoint /path/to/model_kitti.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py kitti --checkpoint /path/to/model_kitti.pth --stage coarse
    

Testing on Cityscapes

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    We will soon release the code for e2ec with multi component detection. Currently only supported for testing e2ec performance on cityscapes dataset.

    # testing segmentation accuracy on Cityscapes with coco evaluator
    python test.py cityscapesCoco --checkpoint /path/to/model_cityscapes.pth
    # with cityscapes official evaluator
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth
    # testing the detection accuracy
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --eval bbox
    # testing the speed
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --stage coarse
    # testing on test set, run and submit the result file
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth \
    --dataset cityscapes_test
    

Evaluate boundary AP

  1. Install the Boundary IOU API according boundary iou.

  2. Testing segmentation accuracy with coco evaluator.

  3. Using offline evaluation pipeline.

    python /path/to/boundary_iou_api/tools/coco_instance_evaluation.py \
        --gt-json-file /path/to/annotation_file.json \
        --dt-json-file data/result/result.json \
        --iou-type boundary
    

Visualization

  1. Download the pretrained model.

  2. Visualize:

    # inference and visualize the images with coco pretrained model
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True
    # you can using other pretrained model, such as cityscapes 
    python visualize.py cityscapesCoco /path/to/images \
    --checkpoint /path/to/model_cityscapes.pth
    # if you want to save the visualisation, please specify --output_dir
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --output_dir /path/to/output_dir
    # visualize the results at different stage
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # you can reset the score threshold, default is 0.3
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --ct_score 0.1
    # if you want to filter some of the jaggedness caused by dml 
    # please using post_process
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --with_post_process True
    

Training

We have only released the code for single GPU training, multi GPU training with ddp will be released soon.

Training on SBD

python train_net.py sbd --bs $batch_size
# if you do not want to use dinamic matching loss (significantly improves 
# contour detail but introduces jaggedness), please set --dml as False
python train_net.py sbd --bs $batch_size --dml False

Training on KINS

python train_net.py kitti --bs $batch_size

Training on Cityscapes

python train_net.py cityscapesCoco --bs $batch_size

Training on COCO

In fact it is possible to achieve the same accuracy without training so many epochs.

# first to train with adam
python train_net.py coco --bs $batch_size
# then finetune with sgd
python train_net.py coco_finetune --bs $batch_size \
--type finetune --checkpoint data/model/139.pth

Training on the other dataset

If the annotations is in coco style:

  1. Add dataset information to dataset/info.py.

  2. Modify the configs/coco.py, reset the train.dataset , model.heads['ct_hm'] and test.dataset. Maybe you also need to change the train.epochs, train.optimizer['milestones'] and so on.

  3. Train the network.

    python train_net.py coco --bs $batch_size
    

If the annotations is not in coco style:

  1. Prepare dataset/train/your_dataset.py and dataset/test/your_dataset.py by referring to dataset/train/base.py and dataset/test/base.py.

  2. Prepare evaluator/your_dataset/snake.py by referring to evaluator/coco/snake.py.

  3. Prepare configs/your_dataset.py and by referring to configs/base.py.

  4. Train the network.

    python train_net.py your_dataset --bs $batch_size
    

Citation

If you find this project helpful for your research, please consider citing using BibTeX below:

@article{zhang2022e2ec,
  title={E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation},
  author={Zhang, Tao and Wei, Shiqing and Ji, Shunping},
  journal={arXiv preprint arXiv:2203.04074},
  year={2022}
}

Acknowledgement

Code is largely based on Deep Snake. Thanks for their wonderful works.

Owner
zhangtao
zhangtao
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022