E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

Related tags

Deep Learninge2ec
Overview

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

city

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
Tao Zhang, Shiqing Wei, Shunping Ji
CVPR 2022

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md.

Performances

We re-tested the speed on a single RTX3090.

Dtataset AP Image size FPS
SBD val 59.2 512×512 59.60
COCO test-dev 33.8 original size 35.25
KINS val 34.0 768×2496 12.39
Cityscapes val 34.0 1216×2432 8.58

The accuracy and inference speed of the contours at different stages on SBD val set. We also re-tested the speed on a single RTX3090.

stage init coarse final final-dml
AP 51.4 55.9 58.8 59.2
FPS 101.73 91.35 67.48 59.6

The accuracy and inference speed of the contours at different stages on coco val set.

stage init coarse final final-dml
AP 27.8 31.6 33.5 33.6
FPS 80.97 72.81 42.55 35.25

Testing

Testing on COCO

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the COCO dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True
    # testing detection accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --eval bbox
    # testing the speed
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # testing on coco test-dev set, run and submit data/result/results.json
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --dataset coco_test
    

Testing on SBD

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the SBD dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth
    # testing detection accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth --eval bbox
    # testing the speed
    python test.py sbd --checkpoint /path/to/model_sbd.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py sbd --checkpoint /path/to/model_sbd.pth --stage coarse
    

Testing on KINS

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    Maybe you will find some troules, such as object of type <class 'numpy.float64'> cannot be safely interpreted as an integer. Please modify the /path/to/site-packages/pycocotools/cooceval.py. Replace np.round((0.95 - .5) / .05) in lines 506 and 507 with int(np.round((0.95 - .5) / .05)).

    # testing segmentation accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth
    # testing detection accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth --eval bbox
    # testing the speed
    python test.py kitti --checkpoint /path/to/model_kitti.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py kitti --checkpoint /path/to/model_kitti.pth --stage coarse
    

Testing on Cityscapes

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    We will soon release the code for e2ec with multi component detection. Currently only supported for testing e2ec performance on cityscapes dataset.

    # testing segmentation accuracy on Cityscapes with coco evaluator
    python test.py cityscapesCoco --checkpoint /path/to/model_cityscapes.pth
    # with cityscapes official evaluator
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth
    # testing the detection accuracy
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --eval bbox
    # testing the speed
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --stage coarse
    # testing on test set, run and submit the result file
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth \
    --dataset cityscapes_test
    

Evaluate boundary AP

  1. Install the Boundary IOU API according boundary iou.

  2. Testing segmentation accuracy with coco evaluator.

  3. Using offline evaluation pipeline.

    python /path/to/boundary_iou_api/tools/coco_instance_evaluation.py \
        --gt-json-file /path/to/annotation_file.json \
        --dt-json-file data/result/result.json \
        --iou-type boundary
    

Visualization

  1. Download the pretrained model.

  2. Visualize:

    # inference and visualize the images with coco pretrained model
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True
    # you can using other pretrained model, such as cityscapes 
    python visualize.py cityscapesCoco /path/to/images \
    --checkpoint /path/to/model_cityscapes.pth
    # if you want to save the visualisation, please specify --output_dir
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --output_dir /path/to/output_dir
    # visualize the results at different stage
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # you can reset the score threshold, default is 0.3
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --ct_score 0.1
    # if you want to filter some of the jaggedness caused by dml 
    # please using post_process
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --with_post_process True
    

Training

We have only released the code for single GPU training, multi GPU training with ddp will be released soon.

Training on SBD

python train_net.py sbd --bs $batch_size
# if you do not want to use dinamic matching loss (significantly improves 
# contour detail but introduces jaggedness), please set --dml as False
python train_net.py sbd --bs $batch_size --dml False

Training on KINS

python train_net.py kitti --bs $batch_size

Training on Cityscapes

python train_net.py cityscapesCoco --bs $batch_size

Training on COCO

In fact it is possible to achieve the same accuracy without training so many epochs.

# first to train with adam
python train_net.py coco --bs $batch_size
# then finetune with sgd
python train_net.py coco_finetune --bs $batch_size \
--type finetune --checkpoint data/model/139.pth

Training on the other dataset

If the annotations is in coco style:

  1. Add dataset information to dataset/info.py.

  2. Modify the configs/coco.py, reset the train.dataset , model.heads['ct_hm'] and test.dataset. Maybe you also need to change the train.epochs, train.optimizer['milestones'] and so on.

  3. Train the network.

    python train_net.py coco --bs $batch_size
    

If the annotations is not in coco style:

  1. Prepare dataset/train/your_dataset.py and dataset/test/your_dataset.py by referring to dataset/train/base.py and dataset/test/base.py.

  2. Prepare evaluator/your_dataset/snake.py by referring to evaluator/coco/snake.py.

  3. Prepare configs/your_dataset.py and by referring to configs/base.py.

  4. Train the network.

    python train_net.py your_dataset --bs $batch_size
    

Citation

If you find this project helpful for your research, please consider citing using BibTeX below:

@article{zhang2022e2ec,
  title={E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation},
  author={Zhang, Tao and Wei, Shiqing and Ji, Shunping},
  journal={arXiv preprint arXiv:2203.04074},
  year={2022}
}

Acknowledgement

Code is largely based on Deep Snake. Thanks for their wonderful works.

Owner
zhangtao
zhangtao
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022