High-Resolution 3D Human Digitization from A Single Image.

Related tags

Deep Learningpifuhd
Overview

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020)

report Open In Colab

News:

  • [2020/06/15] Demo with Google Colab (incl. visualization) is available! Please check out #pifuhd on Twitter for many results tested by users!

This repository contains a pytorch implementation of "Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization".

Teaser Image

This codebase provides:

  • test code
  • visualization code

Demo on Google Colab

In case you don't have an environment with GPUs to run PIFuHD, we offer Google Colab demo. You can also upload your own images and reconstruct 3D geometry together with visualization. Try our Colab demo using the following notebook:
Open In Colab

Requirements

  • Python 3
  • PyTorch tested on 1.4.0, 1.5.0
  • json
  • PIL
  • skimage
  • tqdm
  • cv2

For visualization

  • trimesh with pyembree
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • ffmpeg

Note: At least 8GB GPU memory is recommended to run PIFuHD model.

Run the following code to install all pip packages:

pip install -r requirements.txt 

Download Pre-trained model

Run the following script to download the pretrained model. The checkpoint is saved under ./checkpoints/.

sh ./scripts/download_trained_model.sh

A Quick Testing

To process images under ./sample_images, run the following code:

sh ./scripts/demo.sh

The resulting obj files and rendering will be saved in ./results. You may use meshlab (http://www.meshlab.net/) to visualize the 3D mesh output (obj file).

Testing

  1. run the following script to get joints for each image for testing (joints are used for image cropping only.). Make sure you correctly set the location of OpenPose binary. Alternatively colab demo provides more light-weight cropping rectange estimation without requiring openpose.
python apps/batch_openpose.py -d {openpose_root_path} -i {path_of_images} -o {path_of_images}
  1. run the following script to run reconstruction code. Make sure to set --input_path to path_of_images, --out_path to where you want to dump out results, and --ckpt_path to the checkpoint. Note that unlike PIFu, PIFuHD doesn't require segmentation mask as input. But if you observe severe artifacts, you may try removing background with off-the-shelf tools such as removebg. If you have {image_name}_rect.txt instead of {image_name}_keypoints.json, add --use_rect flag. For reference, you can take a look at colab demo.
python -m apps.simple_test
  1. optionally, you can also remove artifacts by keeping only the biggest connected component from the mesh reconstruction with the following script. (Warning: the script will overwrite the original obj files.)
python apps/clean_mesh.py -f {path_of_objs}

Visualization

To render results with turn-table, run the following code. The rendered animation (.mp4) will be stored under {path_of_objs}.

python -m apps.render_turntable -f {path_of_objs} -ww {rendering_width} -hh {rendering_height} 
# add -g for geometry rendering. default is normal visualization.

Citation

@inproceedings{saito2020pifuhd,
  title={PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization},
  author={Saito, Shunsuke and Simon, Tomas and Saragih, Jason and Joo, Hanbyul},
  booktitle={CVPR},
  year={2020}
}

Relevant Projects

Monocular Real-Time Volumetric Performance Capture (ECCV 2020)
Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

The first real-time PIFu by accelerating reconstruction and rendering!!

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization (ICCV 2019)
Shunsuke Saito*, Zeng Huang*, Ryota Natsume*, Shigeo Morishima, Angjoo Kanazawa, Hao Li

The original work of Pixel-Aligned Implicit Function for geometry and texture reconstruction, unifying sigle-view and multi-view methods.

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019)
Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

We answer to the question of "how can we learn implicit function if we don't have 3D ground truth?"

SiCloPe: Silhouette-Based Clothed People (CVPR 2019, best paper finalist)
Ryota Natsume*, Shunsuke Saito*, Zeng Huang, Weikai Chen, Chongyang Ma, Hao Li, Shigeo Morishima

Our first attempt to reconstruct 3D clothed human body with texture from a single image!

Other Relevant Works

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020)
Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Learning PIFu in canonical space for animatable avatar generation!

Robust 3D Self-portraits in Seconds (CVPR 2020)
Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

They extend PIFu to RGBD + introduce "PIFusion" utilizing PIFu reconstruction for non-rigid fusion.

Deep Volumetric Video from Very Sparse Multi-view Performance Capture (ECCV 2018)
Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe LeGendre, Linjie Luo, Chongyang Ma, Hao Li

Implict surface learning for sparse view human performance capture!

License

CC-BY-NC 4.0. See the LICENSE file.

Owner
Meta Research
Meta Research
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022