[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Related tags

Deep LearningOkMugle
Overview

Ok Mugle! 🎵

장르부터 멜로디까지, Content-based Music Recommendation

발표 ppt(1차)_1

Description 📖

  • 본 프로젝트에서는 Kakao Arena에서 제공하는 Melon Playlist Continuation 데이터를 활용하여, 사용자가 검색한 노래와 유사한 노래 추천을 구현하였습니다.

발표 ppt(1차)_8

  1. [Model] '유사성'의 기준을 멜로디, 분위기, 상황, 장르 등으로 정의
    • 해당 요소 반영하여 Music2Vec, Time Convolutional AutoEncoder, ConsineEmbeddingLoss Multimodal 등의 모델 Building
  2. [Retrieval] Embedding의 Cosine Similarity를 구하여 Retrieval 구성
  3. [Ranking] 다양한 Ranking Method 사용 → 추천 결과 Ensemble
  4. [Serving] 최종적으로 Score Total Top 10 Ranking Method의 추천 결과 활용하여 Web 구현 & 모델 Serving

Usage ✔️

  • Windows Shell에 아래 명령을 입력하여 실행합니다.
set FLASK_APP=server
set FLASK_ENV=development
flask run

Result (Web) 💻

웹 메인

  • 검색창에 '비투비 - 비밀 (Insane) (Acoustic Ver.)'를 검색한 결과 화면

웹 검색결과

Presentation 🙋

컨퍼런스 발표영상과 보고서입니다. 자세한 분석 내용은 아래 링크를 통해 확인해주세요!

  • GoogleDrive Badge
  • Youtube Badge

Contributor 🧑‍🤝‍🧑

기수 이름
15기 이성범
16기 김권호
16기 박한나
16기 이승주
16기 이예림
16기 주지훈
7기 이광록(멘토)

File Directory 📂

Ok Mugle!
├── 1. preprocessig
│   ├── make_song_meta_and_playlist.ipynb       # 노래, 플레이리스트 데이터 전처리
│   ├── make_mel_data.ipynb                     # 멜 데이터 전처리
│   └── make_mel_batch_data.ipynb               # 멜 데이터 배치 단위로 전처리
│
├── 2. model
│   ├── genre_embedding_model.ipynb             # Music2Vec
│   ├── mel_embedding_model.ipynb               # Time Convolutional Autoencoder
│   └── genre_and_mel_embedding_model.ipynb     # CosineEmbeddingLoss Multimodal
│
├── 3. embedding-visualization
│   └── embedding_visualization_tsne.ipynb      # t-SNE를 활용한 각 임베딩별 시각화
│
├── 4. ranking
│   ├── make_ranking_data_preprocessig.ipynb    # 각 임베딩별 코사인 유사도 Top50 데이터 셋 제작 
│   ├── make_ranking_data_multiprocessig.py     # make_ranking_data_preprocessig의 multiprocessig을 위한 함수
│   ├── make_ranking_data.ipynb                 # 순위별 가중치 ranking, 각 임베딩 별 상위 Top3 ranking
│   └── cos_sim_music_serving.ipynb             # 각 임베딩, ranking 별 결과
│
└── 5. web
    ├── crawling                                # 결과창 구현을 위한 데이터 수집
    │   └── melon_crawling.py 
    │ 
    ├── data                                    # 웹 제작에 활용된 데이터
    │    ├── ranking_song_id2playlist.json
    │    ├── song_id2artist_name_basket.json
    │    ├── song_id2song_name.json
    │    └── song_name_artist_name2song_id.json
    │ 
    ├── static                                  # 웹 제작에 활용된 css, font, image, js
    │    ├── css
    │    ├── fonts
    │    ├── images
    │    └── js
    │ 
    ├── templates                               # 프론트 구현
    │    ├── about.html
    │    ├── index.html
    │    ├── people.html
    │    └── result.html
    │ 
    └── server.py                               # 백엔드 구현
    │
    └── requirements.txt                        # 필요 패키지 목록
      
Owner
SeongBeomLEE
안녕하세요.👋 같이에 가치를 아는 머신러닝 엔지니어 이성범 입니다!
SeongBeomLEE
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022