Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Overview

Memory Compressed Attention

Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers both the causal and non-causal variant, and will take care of the padding if the sequence length is not divisible by the compression ratio.

The code also resolves an edge-case where the very first query have no keys to attend to in the auto-regressive scenario. The solution is to use null key/values, appended to the final compressed set, so that there is always at least 1 key for all queries to attend to.

Install

$ pip install memory_compressed_attention

Usage

import torch
from memory_compressed_attention import MemoryCompressedAttention

attn = MemoryCompressedAttention(
    dim = 512,
    heads = 8,                 # number of heads
    causal = False,            # auto-regressive or not
    compression_factor = 3,    # compression ratio
    dropout = 0.1              # dropout post-attention
)

x = torch.randn(1, 1024, 512)
mask = torch.ones(1, 1024).bool()

attn(x, input_mask = mask) # (1, 1024, 512)

Citations

@misc{liu2018generating,
    title={Generating Wikipedia by Summarizing Long Sequences},
    author={Peter J. Liu and Mohammad Saleh and Etienne Pot and Ben Goodrich and Ryan Sepassi and Lukasz Kaiser and Noam Shazeer},
    year={2018},
    eprint={1801.10198},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
You might also like...
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

 Attention for PyTorch with Linear Memory Footprint
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Comments
  • The order of masking and softmax operation

    The order of masking and softmax operation

    Hi,

    In memory_compressed_attention.py, I'm wondering if we need to do softmax operation after masking? Btw, if the entry in the mask should be float('-inf') instead of -float('-inf')? If I make something wrong, please correct me.

    image

    Thanks!

    opened by cfeng16 3
  • mask error in attention

    mask error in attention

    Very grateful for your pioneering work! I want to use it in Standard Transformer released in http://nlp.seas.harvard.edu/2018/04/03/attention.html. but it mat a mask error in training. more detail information shown as follow, the code i use: image class ConvCompress(nn.Module): def init(self, dim, ratio = 2, groups = 1): super(ConvCompress, self).init() self.conv = nn.Conv1d(dim, dim, ratio, stride = ratio, groups = groups) #self.linear = nn.Linear(dim, dim)

    def forward(self, mem):
        mem = mem.transpose(1, 2)
        compressed_mem = self.conv(mem)
        return compressed_mem.transpose(1, 2)
    

    class MemoryCompressedAttention(nn.Module): def init(self, h, d_model, compression_factor = 2, dropout = 0.1): super(MemoryCompressedAttention, self).init() assert (d_model % h) == 0, 'dimension must be divisible by number of heads' self.h = h self.d_model = d_model self.d_k = d_model // h

        self.compression_factor = compression_factor
        self.compress_fn = ConvCompress(d_model, compression_factor, groups = h)
    
        #self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
        self.wq = nn.Linear(d_model, d_model, bias = False)
        self.wk = nn.Linear(d_model, d_model, bias = False)
        self.wv = nn.Linear(d_model, d_model, bias = False)
    
        self.wo = nn.Linear(d_model, d_model)
    
        self.dropout = nn.Dropout(dropout)
    
        #self.null_k = nn.Parameter(torch.zeros(1, 1, d_model))
        #self.null_v = nn.Parameter(torch.zeros(1, 1, d_model))
    
    def forward(self, query, key, value, mask = None):
        
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        t = query.size(1)
        cf = self.compression_factor
    
        query = self.wq(query)
        key = self.wk(key)
        value = self.wv(value)
    
        # make sure keys and values sequence lengths
        # are divisible by the compression factor
        padding = cf - (t % cf)
        if padding != 0:
            key, value = map(lambda t: F.pad(t, (0, 0, padding, 0)), (key, value))
    
    
        # compress keys and values
        key, value = map(self.compress_fn, (key, value))
    
        # attach a null key and value, in the case that the first query has no keys to pay attention to
        null_k = nn.Parameter(torch.zeros(key.size(0), 1, self.d_model)).cuda()
        null_v = nn.Parameter(torch.zeros(value.size(0), 1, self.d_model)).cuda()
    
        key = torch.cat((null_k, key), dim=1)
        value = torch.cat((null_v, value), dim=1)
        
        # merge heads
        #query, key, value = map(lambda t: t.reshape(*t.shape[:2], h, -1).transpose(1, 2), (query, key, value))
        # 1) Do all the linear projections in batch from d_model => h x d_k
        query = query.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
        key = key.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
        value = value.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
    
      
        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(query, key, value, mask=mask,
                                 dropout=self.dropout)
    
        # 3) "Concat" using a view and apply a final linear.   # split heads and combine
        x = x.contiguous().view(nbatches, -1, self.d_model)
        out = self.wo(x)
    
        return out
    

    The error was show that image

    I want to know how to fix it, and how to do mask for N*M matrix??

    opened by HN123-123 0
Releases(0.0.5)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022