Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Overview

Memory Compressed Attention

Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers both the causal and non-causal variant, and will take care of the padding if the sequence length is not divisible by the compression ratio.

The code also resolves an edge-case where the very first query have no keys to attend to in the auto-regressive scenario. The solution is to use null key/values, appended to the final compressed set, so that there is always at least 1 key for all queries to attend to.

Install

$ pip install memory_compressed_attention

Usage

import torch
from memory_compressed_attention import MemoryCompressedAttention

attn = MemoryCompressedAttention(
    dim = 512,
    heads = 8,                 # number of heads
    causal = False,            # auto-regressive or not
    compression_factor = 3,    # compression ratio
    dropout = 0.1              # dropout post-attention
)

x = torch.randn(1, 1024, 512)
mask = torch.ones(1, 1024).bool()

attn(x, input_mask = mask) # (1, 1024, 512)

Citations

@misc{liu2018generating,
    title={Generating Wikipedia by Summarizing Long Sequences},
    author={Peter J. Liu and Mohammad Saleh and Etienne Pot and Ben Goodrich and Ryan Sepassi and Lukasz Kaiser and Noam Shazeer},
    year={2018},
    eprint={1801.10198},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
You might also like...
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

 Attention for PyTorch with Linear Memory Footprint
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Comments
  • The order of masking and softmax operation

    The order of masking and softmax operation

    Hi,

    In memory_compressed_attention.py, I'm wondering if we need to do softmax operation after masking? Btw, if the entry in the mask should be float('-inf') instead of -float('-inf')? If I make something wrong, please correct me.

    image

    Thanks!

    opened by cfeng16 3
  • mask error in attention

    mask error in attention

    Very grateful for your pioneering work! I want to use it in Standard Transformer released in http://nlp.seas.harvard.edu/2018/04/03/attention.html. but it mat a mask error in training. more detail information shown as follow, the code i use: image class ConvCompress(nn.Module): def init(self, dim, ratio = 2, groups = 1): super(ConvCompress, self).init() self.conv = nn.Conv1d(dim, dim, ratio, stride = ratio, groups = groups) #self.linear = nn.Linear(dim, dim)

    def forward(self, mem):
        mem = mem.transpose(1, 2)
        compressed_mem = self.conv(mem)
        return compressed_mem.transpose(1, 2)
    

    class MemoryCompressedAttention(nn.Module): def init(self, h, d_model, compression_factor = 2, dropout = 0.1): super(MemoryCompressedAttention, self).init() assert (d_model % h) == 0, 'dimension must be divisible by number of heads' self.h = h self.d_model = d_model self.d_k = d_model // h

        self.compression_factor = compression_factor
        self.compress_fn = ConvCompress(d_model, compression_factor, groups = h)
    
        #self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
        self.wq = nn.Linear(d_model, d_model, bias = False)
        self.wk = nn.Linear(d_model, d_model, bias = False)
        self.wv = nn.Linear(d_model, d_model, bias = False)
    
        self.wo = nn.Linear(d_model, d_model)
    
        self.dropout = nn.Dropout(dropout)
    
        #self.null_k = nn.Parameter(torch.zeros(1, 1, d_model))
        #self.null_v = nn.Parameter(torch.zeros(1, 1, d_model))
    
    def forward(self, query, key, value, mask = None):
        
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        t = query.size(1)
        cf = self.compression_factor
    
        query = self.wq(query)
        key = self.wk(key)
        value = self.wv(value)
    
        # make sure keys and values sequence lengths
        # are divisible by the compression factor
        padding = cf - (t % cf)
        if padding != 0:
            key, value = map(lambda t: F.pad(t, (0, 0, padding, 0)), (key, value))
    
    
        # compress keys and values
        key, value = map(self.compress_fn, (key, value))
    
        # attach a null key and value, in the case that the first query has no keys to pay attention to
        null_k = nn.Parameter(torch.zeros(key.size(0), 1, self.d_model)).cuda()
        null_v = nn.Parameter(torch.zeros(value.size(0), 1, self.d_model)).cuda()
    
        key = torch.cat((null_k, key), dim=1)
        value = torch.cat((null_v, value), dim=1)
        
        # merge heads
        #query, key, value = map(lambda t: t.reshape(*t.shape[:2], h, -1).transpose(1, 2), (query, key, value))
        # 1) Do all the linear projections in batch from d_model => h x d_k
        query = query.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
        key = key.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
        value = value.view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
    
      
        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(query, key, value, mask=mask,
                                 dropout=self.dropout)
    
        # 3) "Concat" using a view and apply a final linear.   # split heads and combine
        x = x.contiguous().view(nbatches, -1, self.d_model)
        out = self.wo(x)
    
        return out
    

    The error was show that image

    I want to know how to fix it, and how to do mask for N*M matrix??

    opened by HN123-123 0
Releases(0.0.5)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021