git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Overview

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser

Abstract

The success of deep denoisers on real-world color photographs usually relies on the modeling of sensor noise and in-camera signal processing (ISP) pipeline. Performance drop will inevitably happen when the sensor and ISP pipeline of test images are different from those for training the deep denoisers (i.e., noise discrepancy). In this paper, we present an unpaired learning scheme to adapt a color image denoiser for handling test images with noise discrepancy. We consider a practical training setting, i.e., a pretrained denoiser, a set of test noisy images, and an unpaired set of clean images. To begin with, the pre-trained denoiser is used to generate the pseudo clean images for the test images. Pseudo-ISP is then suggested to jointly learn the pseudo ISP pipeline and signal-dependent rawRGB noise model using the pairs of test and pseudo clean images. We further apply the learned pseudo ISP and rawRGB noise model to clean color images to synthesize realistic noisy images for denoiser adaption. Pseudo-ISP is effective in synthesizing realistic noisy sRGB images, and improved denoising performance can be achieved by alternating between Pseudo-ISP training and denoiser adaption. Experiments show that our Pseudo-ISP not only can boost simple Gaussian blurring-based denoiser to achieve competitive performance against CBDNet, but also is effective in improving state-of-the-art deep denoisers, e.g., CBDNet and RIDNet.

Illustration of our unpaired learning scheme

drawing

Illustration of our unpaired learning scheme, which iterates with four steps. First, the denoiser is used to obtain pseudo clean images of test noisy images. Then, Pseudo-ISP is deployed to learn noise model in the pseudo rawRGB space, which is further used to synthesize realistic noisy images. Finally, the denoiser is finetuned for adaption using both pseudo and synthetic paired data.

Learning PseudoISP for Noise Modeling

drawing

We constitute our Pseudo-ISP involving three subnets, i.e.,sRGB2Raw, Raw2sRGB and noise estimation (see Fig. 3).

Comparison with State-of-the-arts

drawing

Table 6 lists the PSNR and SSIM results. On all datasets, CBDNet*, RIDNet* and PT-MWRN* outperform their counterparts, indicating that our Pseudo-ISP can be incorporated with different pre-trained denoisers for handling various kinds of noise discrepancy.

Dataset Download Link

Download the mat file of DND dataset

Pre-trained Denoising Model Download Link

Contact

Please send email to [email protected] or [email protected]

Owner
Yue Cao
Interested in low-level vision problem. First-year PhD candidate at HIT-VPC.
Yue Cao
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022