git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Overview

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser

Abstract

The success of deep denoisers on real-world color photographs usually relies on the modeling of sensor noise and in-camera signal processing (ISP) pipeline. Performance drop will inevitably happen when the sensor and ISP pipeline of test images are different from those for training the deep denoisers (i.e., noise discrepancy). In this paper, we present an unpaired learning scheme to adapt a color image denoiser for handling test images with noise discrepancy. We consider a practical training setting, i.e., a pretrained denoiser, a set of test noisy images, and an unpaired set of clean images. To begin with, the pre-trained denoiser is used to generate the pseudo clean images for the test images. Pseudo-ISP is then suggested to jointly learn the pseudo ISP pipeline and signal-dependent rawRGB noise model using the pairs of test and pseudo clean images. We further apply the learned pseudo ISP and rawRGB noise model to clean color images to synthesize realistic noisy images for denoiser adaption. Pseudo-ISP is effective in synthesizing realistic noisy sRGB images, and improved denoising performance can be achieved by alternating between Pseudo-ISP training and denoiser adaption. Experiments show that our Pseudo-ISP not only can boost simple Gaussian blurring-based denoiser to achieve competitive performance against CBDNet, but also is effective in improving state-of-the-art deep denoisers, e.g., CBDNet and RIDNet.

Illustration of our unpaired learning scheme

drawing

Illustration of our unpaired learning scheme, which iterates with four steps. First, the denoiser is used to obtain pseudo clean images of test noisy images. Then, Pseudo-ISP is deployed to learn noise model in the pseudo rawRGB space, which is further used to synthesize realistic noisy images. Finally, the denoiser is finetuned for adaption using both pseudo and synthetic paired data.

Learning PseudoISP for Noise Modeling

drawing

We constitute our Pseudo-ISP involving three subnets, i.e.,sRGB2Raw, Raw2sRGB and noise estimation (see Fig. 3).

Comparison with State-of-the-arts

drawing

Table 6 lists the PSNR and SSIM results. On all datasets, CBDNet*, RIDNet* and PT-MWRN* outperform their counterparts, indicating that our Pseudo-ISP can be incorporated with different pre-trained denoisers for handling various kinds of noise discrepancy.

Dataset Download Link

Download the mat file of DND dataset

Pre-trained Denoising Model Download Link

Contact

Please send email to [email protected] or [email protected]

Owner
Yue Cao
Interested in low-level vision problem. First-year PhD candidate at HIT-VPC.
Yue Cao
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023