LaneAF: Robust Multi-Lane Detection with Affinity Fields

Related tags

Deep LearningLaneAF
Overview

PWC

PWC

LaneAF: Robust Multi-Lane Detection with Affinity Fields

This repository contains Pytorch code for training and testing LaneAF lane detection models introduced in this paper.

Installation

  1. Clone this repository
  2. Install Anaconda
  3. Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate

You can alternately find your desired torch/torchvision wheel from here.

  1. Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh

TuSimple

The entire TuSimple dataset should be downloaded and organized as follows:

└── TuSimple/
    ├── clips/
    |   └── .
    |   └── .
    ├── label_data_0313.json
    ├── label_data_0531.json
    ├── label_data_0601.json
    ├── test_tasks_0627.json
    ├── test_baseline.json
    └── test_label.json

The model requires ground truth segmentation labels during training. You can generate these for the entire dataset as follows:

source activate laneaf # activate virtual environment
python datasets/tusimple.py --dataset-dir=/path/to/TuSimple/
source deactivate # exit virtual environment

Training

LaneAF models can be trained on the TuSimple dataset as follows:

source activate laneaf # activate virtual environment
python train_tusimple.py --dataset-dir=/path/to/TuSimple/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/tusimple folder by default.

Inference

Trained LaneAF models can be run on the TuSimple test set as follows:

source activate laneaf # activate virtual environment
python infer_tusimple.py --dataset-dir=/path/to/TuSimple/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the TuSimple format and also produce benchmark metrics using their official implementation.

CULane

The entire CULane dataset should be downloaded and organized as follows:

└── CULane/
    ├── driver_*_*frame/
    ├── laneseg_label_w16/
    ├── laneseg_label_w16_test/
    └── list/

Training

LaneAF models can be trained on the CULane dataset as follows:

source activate laneaf # activate virtual environment
python train_culane.py --dataset-dir=/path/to/CULane/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/culane folder by default.

Inference

Trained LaneAF models can be run on the CULane test set as follows:

source activate laneaf # activate virtual environment
python infer_culane.py --dataset-dir=/path/to/CULane/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format. You can then use their official code to evaluate the model on the CULane benchmark.

Unsupervised Llamas

The Unsupervised Llamas dataset should be downloaded and organized as follows:

└── Llamas/
    ├── color_images/
    |   ├── train/
    |   ├── valid/
    |   └── test/
    └── labels/
        ├── train/
        └── valid/

Training

LaneAF models can be trained on the Llamas dataset as follows:

source activate laneaf # activate virtual environment
python train_llamas.py --dataset-dir=/path/to/Llamas/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/llamas folder by default.

Inference

Trained LaneAF models can be run on the Llamas test set as follows:

source activate laneaf # activate virtual environment
python infer_llamas.py --dataset-dir=/path/to/Llamas/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format and Llamas format for the Lane Approximations benchmark. Note that the results produced in the Llamas format could be inaccurate because we guess the IDs of the indivudal lanes.

Pre-trained Weights

You can download our pre-trained model weights using this link.

Citation

If you find our code and/or models useful in your research, please consider citing the following papers:

@article{abualsaud2021laneaf,
title={LaneAF: Robust Multi-Lane Detection with Affinity Fields},
author={Abualsaud, Hala and Liu, Sean and Lu, David and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
journal={arXiv preprint arXiv:2103.12040},
year={2021}
}
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023