LaneAF: Robust Multi-Lane Detection with Affinity Fields

Related tags

Deep LearningLaneAF
Overview

PWC

PWC

LaneAF: Robust Multi-Lane Detection with Affinity Fields

This repository contains Pytorch code for training and testing LaneAF lane detection models introduced in this paper.

Installation

  1. Clone this repository
  2. Install Anaconda
  3. Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate

You can alternately find your desired torch/torchvision wheel from here.

  1. Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh

TuSimple

The entire TuSimple dataset should be downloaded and organized as follows:

└── TuSimple/
    ├── clips/
    |   └── .
    |   └── .
    ├── label_data_0313.json
    ├── label_data_0531.json
    ├── label_data_0601.json
    ├── test_tasks_0627.json
    ├── test_baseline.json
    └── test_label.json

The model requires ground truth segmentation labels during training. You can generate these for the entire dataset as follows:

source activate laneaf # activate virtual environment
python datasets/tusimple.py --dataset-dir=/path/to/TuSimple/
source deactivate # exit virtual environment

Training

LaneAF models can be trained on the TuSimple dataset as follows:

source activate laneaf # activate virtual environment
python train_tusimple.py --dataset-dir=/path/to/TuSimple/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/tusimple folder by default.

Inference

Trained LaneAF models can be run on the TuSimple test set as follows:

source activate laneaf # activate virtual environment
python infer_tusimple.py --dataset-dir=/path/to/TuSimple/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the TuSimple format and also produce benchmark metrics using their official implementation.

CULane

The entire CULane dataset should be downloaded and organized as follows:

└── CULane/
    ├── driver_*_*frame/
    ├── laneseg_label_w16/
    ├── laneseg_label_w16_test/
    └── list/

Training

LaneAF models can be trained on the CULane dataset as follows:

source activate laneaf # activate virtual environment
python train_culane.py --dataset-dir=/path/to/CULane/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/culane folder by default.

Inference

Trained LaneAF models can be run on the CULane test set as follows:

source activate laneaf # activate virtual environment
python infer_culane.py --dataset-dir=/path/to/CULane/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format. You can then use their official code to evaluate the model on the CULane benchmark.

Unsupervised Llamas

The Unsupervised Llamas dataset should be downloaded and organized as follows:

└── Llamas/
    ├── color_images/
    |   ├── train/
    |   ├── valid/
    |   └── test/
    └── labels/
        ├── train/
        └── valid/

Training

LaneAF models can be trained on the Llamas dataset as follows:

source activate laneaf # activate virtual environment
python train_llamas.py --dataset-dir=/path/to/Llamas/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/llamas folder by default.

Inference

Trained LaneAF models can be run on the Llamas test set as follows:

source activate laneaf # activate virtual environment
python infer_llamas.py --dataset-dir=/path/to/Llamas/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format and Llamas format for the Lane Approximations benchmark. Note that the results produced in the Llamas format could be inaccurate because we guess the IDs of the indivudal lanes.

Pre-trained Weights

You can download our pre-trained model weights using this link.

Citation

If you find our code and/or models useful in your research, please consider citing the following papers:

@article{abualsaud2021laneaf,
title={LaneAF: Robust Multi-Lane Detection with Affinity Fields},
author={Abualsaud, Hala and Liu, Sean and Lu, David and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
journal={arXiv preprint arXiv:2103.12040},
year={2021}
}
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022