Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Overview

Language Generation with Recurrent Generative Adversarial Networks without Pre-training

Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training".

A short summary of the paper is available here.

Sample outputs (32 chars)

" There has been to be a place w
On Friday , the stories in Kapac
From should be taken to make it 
He is conference for the first t
For a lost good talks to ever ti

Training

To start training the CL+VL+TH model, first download the dataset, available at http://www.statmt.org/lm-benchmark/, and extract it into the ./data directory.

Then use the following command:

python curriculum_training.py

The following packages are required:

  • Python 2.7
  • Tensorflow 1.1
  • Scipy
  • Matplotlib

The following parameters can be configured:

LOGS_DIR: Path to save model checkpoints and samples during training (defaults to './logs/')
DATA_DIR: Path to load the data from (defaults to './data/1-billion-word-language-modeling-benchmark-r13output/')
CKPT_PATH: Path to checkpoint file when restoring a saved model
BATCH_SIZE: Size of batch (defaults to 64)
CRITIC_ITERS: Number of iterations for the discriminator (defaults to 10)
GEN_ITERS: Number of iterations for the geneartor (defaults to 50)
MAX_N_EXAMPLES: Number of samples to load from dataset (defaults to 10000000)
GENERATOR_MODEL: Name of generator model (currently only 'Generator_GRU_CL_VL_TH' is available)
DISCRIMINATOR_MODEL: Name of discriminator model (currently only 'Discriminator_GRU' is available)
PICKLE_PATH: Path to PKL directory to hold cached pickle files (defaults to './pkl')
ITERATIONS_PER_SEQ_LENGTH: Number of iterations to run per each sequence length in the curriculum training (defaults to 15000)
NOISE_STDEV: Standard deviation for the noise vector (defaults to 10.0)
DISC_STATE_SIZE: Discriminator GRU state size (defaults to 512)
GEN_STATE_SIZE: Genarator GRU state size (defaults to 512)
TRAIN_FROM_CKPT: Boolean, set to True to restore from checkpoint (defaults to False)
GEN_GRU_LAYERS: Number of GRU layers for the genarator (defaults to 1)
DISC_GRU_LAYERS: Number of GRU layers for the discriminator (defaults to 1)
START_SEQ: Sequence length to start the curriculum learning with (defaults to 1)
END_SEQ: Sequence length to end the curriculum learning with (defaults to 32)
SAVE_CHECKPOINTS_EVERY: Save checkpoint every # steps (defaults to 25000)
LIMIT_BATCH: Boolean that indicates whether to limit the batch size  (defaults to true)

Parameters can be set by either changing their value in the config file or by passing them in the terminal:

python curriculum_training.py --START_SEQ=1 --END_SEQ=32

Generating text

The generate.py script will generate BATCH_SIZE samples using a saved model. It should be run using the parameters used to train the model (if they are different than the default values). For example:

python generate.py --CKPT_PATH=/path/to/checkpoint/seq-32/ckp --DISC_GRU_LAYERS=2 --GEN_GRU_LAYERS=2

(If your model has not reached stage 32 in the curriculum, make sure to change the '32' in the path above to the maximal stage in the curriculum that your model trained on.)

Evaluating text

To evaluate samples using our %-IN-TEST-n metrics, use the following command, linking to a txt file where each row is a sample:

python evaluate.py --INPUT_SAMPLE=/path/to/samples.txt

Reference

If you found this code useful, please cite the following paper:

@article{press2017language,
  title={Language Generation with Recurrent Generative Adversarial Networks without Pre-training},
  author={Press, Ofir and Bar, Amir and Bogin, Ben and Berant, Jonathan and Wolf, Lior},
  journal={arXiv preprint arXiv:1706.01399},
  year={2017}
}

Acknowledgments

This repository is based on the code published in Improved Training of Wasserstein GANs.

[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022