CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

Overview

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

This document describes how to install and use CRISCE (CRItical SCEnario), the tool developed by Jasim Ahmed and others for automatically generate simulations of car crashed from accident sketches using BeamNG.tech.

Repo Organization

.
├── Datasets
│   ├── CIREN
│   └── SYNTH
├── LICENSE
├── PythonRobotics
├── README.md
├── beamngpy-1.18-py2.py3-none-any.whl
├── crisce
└── requirements.txt

The crisce folder contains the source code of the tool. The Datasets folder contains the sample accident sketches compatible with the tool: CIREN contains sketches from NHTSA; SYNT contains synthetic sketches that we manually created from pre-existing car crash simulations in BeamNG.tech.

beamngpy-1.18-py2.py3-none-any.whl is the wheel file necessary to manually install beamngpy the Python API to BeamNG.tech. Tl;DR: The package available on pypi is broken.

requirements.txt lists the python packages needed to install the tool. They are in the usual format accepted by pip.

Dependencies

CRISCE is a tool written in Python, therefore it requires a working Python installation. Specifically, we tested CRISCE with Python 3.7.10

CRISCE uses the BeamNG.tech simulator to run the driving simulations. Therefore, BeamNG.tech must be installed as well.

Note: the version of the simulator used by CRISCE is BeamNG.research v1.7.0.1

BeamNG.tech is free for research use and can be requested to BeamNG.GmbH by submitting the form at the following link: https://register.beamng.tech/

NOTE: BeamNG.tech currently supports only Windows, hence CRISCE cannot be used on other platforms (e.g., Linux/Mac) unless you can resort to full system virtualization. For example, we tested CRISCE using the commercial tool Parallels Desktop running on a Mac Book Pro. Performance will not be the same but at least it gets the job done.

Installation

Installing BeamNG.tech

After successfully registered to https://register.beamng.tech/, you should receive an email with the instructions to access the software and a registration key (i.e., tech.key).

Please download the BeamNG.research v1.7.0.1 and unzip it somewhere in your system.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please install it in a location that matches these requirements. We suggest something simple, like C:\BeamNG.research_v1.7.0.1.

We refer to this folder as

Store a copy of the tech.key file in a folder somewhere in your system and rename this copy to research.key. BeamNG use this folder to cache the content and the simulation data.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please store the registration file in a location that matches these requirements. We suggest something simple, like C:\BeamNG_user.

We refer to this folder as

Installing CRISCE and its Dependencies

We exemplify the installation and usage of CRISCE using Windows Powershell; you can use other systems (e.g., PyCharm) but in that case you need to adapt the commands below.

Before starting, check that you have installed the right version of Python:

python.exe -V
    Python 3.7.10

To install CRISCE we suggest creating a virtual environment using venv. You can also use conda or similar, but in this case you need to adapt the command below to fit your case.

Move to CRISCE's root folder (i.e., where this file is) and create a new virtual environment:

python.exe -m venv .venv

Activate the virtual environment and upgrade pip, setup tools and wheel.

.venv\Scripts\activate
py.exe -m pip install --upgrade pip
pip install setuptools wheel --upgrade

Install the python dependencies listed in the requirements.txt:

pip install -r requirements.txt

At this point, we need to install beamingly from the provided wheel file:

pip install beamngpy-1.18-py2.py3-none-any.whl

Finally, we need to make sure the code of PythonRobotics is there:

git submodule init
git submodule update

At this point, you should be ready to go.

Confirm that CRISCE is installed using the following command from the root folder of this repo:

py.exe crisce/app.py --help

This command must produce an output similar to:

Usage: app.py [OPTIONS] COMMAND [ARGS]...

Options:
  --log-to PATH  Location of the log file. If not specified logs appear on the
                 console
  --debug        Activate debugging (results in more logging)  [default:
                 (Disabled)]
  --help         Show this message and exit.

Commands:
  generate

Running CRISCE

The current release of CRISCE allows to generate a BeamNG simulation of a car crash from a single sketch using the command generate. This command accepts several parameters that you can list by invoking:

py.exe crisce/app.py generate --help

Usage: app.py generate [OPTIONS]

Options:
  --accident-sketch PATH        Input accident sketch for generating the
                                simulation  [required]
  --dataset-name [CIREN|SYNTH]  Name of the dataset the accident comes from.
                                [required]
  --output-to PATH              Folder to store outputs. It will created if
                                not present. If omitted we use the accident
                                folder.
  --beamng-home PATH            Home folder of the BeamNG.research simulator
                                [required]
  --beamng-user PATH            User folder of the BeamNG.research simulator
                                [required]
  --help                        Show this message and exit.

The following commands show how you can generate a simulation of a real car crash (i.e., from a sketch in the CIREN dataset) and from a simulated crash (i.e., from a sketch in the SYNTH dataset). The difference between the two dataset is that for sketches of real car crashes, we have information about the expected impact; while, for synthetic sketches the information is missing.

For example, to create a simulation form the following sketch (i.e., CIREN-99817): CIREN-99817

CIREN-99817

you can run the following command (after replacing and with the appropriate values:

py.exe crisce/app.py generate generate --accident-sketch .\Datasets\CIREN\99817\ --dataset-name CIREN --beamng-home `
   
    ` --beamng-user 
    

    
   

To create a simulation form the following synthetic sketch (i.e., fourway_1): CIREN-99817

you can run the following command:

py.exe crisce/app.py generate generate --accident-sketch ./Datasets/SYNTH/fourway_1 --dataset-name SYNTH --beamng-home `
   
    ` --beamng-user 
    

    
   

Reporting

The generate command produces a number of intermediate outputs that show the progress of the computation and measure the accuracy of the simulation that is printed on the console:

Quality_of_environment = 33.0, quality_of_crash = 17.0, quality_of_trajecory = 19.009199327937655
Crash Simulation Accuracy =  69.00919932793765 %

The intermediate results instead are stored under the sketch folder (under output) or the folder configured via the --output-to parameter.

For the case CIREN-99817 for example, those are the intermediate results produced by CRISCE:

output/
├── car
│   ├── 0_mask_result_b.jpg
│   ├── 0_mask_result_r.jpg
│   ├── 1_blend_masks_r_b.jpg
│   ├── 1_blend_masks_res.jpg
│   ├── 2_opening_morph.jpg
│   ├── 3_AABB_OBB.jpg
│   ├── 4_crash_point_visualization.jpg
│   ├── 5_triangle_extraction.jpg
│   ├── 6_angles_for_vehicles.jpg
│   ├── 7_sequence_of_movements.jpg
│   ├── 8_twelve_point_model_sides.jpg
│   └── 9_crash_point_on_vehicles.jpg
├── kinematics
│   ├── 0_distorted_control_points.jpg
│   ├── 1_distorted_control_points.jpg
│   ├── 2_distorted_trajectory.jpg
│   ├── 2_original_trajectory.jpg
│   ├── 3_distorted_trajectory.jpg
│   └── 3_original_trajectory.jpg
├── road
│   ├── 0_gray_image.jpg
│   ├── 1_blur_image.jpg
│   ├── 2_threshold_image.jpg
│   ├── 3_dilate_image.jpg
│   ├── 4_erode_image.jpg
│   ├── 5_Contour_Viz_image.jpg
│   ├── 6_midpoints_of_lane.jpg
│   ├── 7_distortion_mapping.jpg
│   └── 8_final_result.jpg
├── simulation
│   ├── 0_sim_plot_road.jpg
│   ├── 1_sim_initial_pos_dir.jpg
│   ├── 2_sim_bbox_traj.jpg
│   ├── 3_crisce_beamng_efficiency.jpg
│   ├── 3_crisce_efficiency.jpg
│   └── 4_trace_veh_BBOX.jpg
└── summary.json
Owner
Chair of Software Engineering II, Uni Passau
Chair of Software Engineering II, Uni Passau
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022