A tiny, pedagogical neural network library with a pytorch-like API.

Related tags

Deep Learningcandl
Overview

candl

A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use the actual pytorch for more serious deep learning business.

The implementation is complete with tensor-valued autodiff (~100 lines) and a neural network API built off of it (~80 lines).

Learning

This little project is actually the result of an article I wrote. Using it, you can learn more about how neural networks work and implement everything in candl yourself from scratch.

Installation

pip install candl

Usage

First, import candl.

import candl

Candl comes with two modules: nn and Tensor. The nn module contains tools like modules, layers, SGD, MSE, etc. Candl tensors are extensions of numpy ndarrays that can be used to represent data and compute derivatives.

To train a neural net (let's try to learn XOR), first we can create a model.

nn = candl.nn

model = nn.Sequential(nn.Linear(2, 10), 
                      nn.ReLU(), 
                      nn.Linear(10, 10), 
                      nn.ReLU(), 
                      nn.Linear(10, 1))
lr = 1e-3

loss_fn = nn.MSE()
optimizer = nn.SGD(model.parameters(), lr)

Then, we train:

data = [([0, 0], [0]), ([0, 1], [1]), ([1, 0], [1]), ([1, 1], [0])]

for epoch in range(1000):
    for sample in data:
        """ 
        Note that we only allow batches of data, so the shape of the tensor must be n x m,
        where m is the dimensionality of the input for each batch.
        """
        x = candl.tensor([sample[0]]) 
        y = candl.tensor([sample[1]])
        loss = loss_fn(model.forward(x), y)
        loss.backward()
        # The `True` argument automatically zeroes the gradients after a step
        optimizer.step(True) 

Features

  • Tensors built upon numpy's ndarrays
  • Tensor-valued autograd
  • Mean Squared Error Loss Function
  • Stochastic Gradient Descent (SGD)
  • Blocks (Modules) for putting together neural networks
  • Built-in layers: Linear, ReLU, Sigmoid, Tanh
Owner
Sri Pranav
A 16 year old high school student captured by the allure of electronics, machine learning, and theoretical computer science.
Sri Pranav
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022