BRepNet: A topological message passing system for solid models

Overview

BRepNet: A topological message passing system for solid models

This repository contains the an implementation of BRepNet: A topological message passing system for solid models.

BRepNet kernel image

About BRepNet

BRepNet is a neural network specifically designed to operate on solid models. It uses additional topological information present in the boundary representation (B-Rep) data structure to perform convolutions in a way which is not possible for arbitrary graphs. As B-Reps describe manifolds, they contain additional topological information which includes the ordering of edges around faces as well as the face adjacency. The topology is defined using oriented edges called coedges. Each coedge maintains an adjacency relationship with the next and previous coedge around its parent face, the mating coedge on the adjacent face, the parent face and the parent edge.

B-Rep topology and topological walks

Using this information, we can identify faces, edges and coedges in the neighborhood of some starting coedge (red), using topological walks. A topological walk is a series of instructions we move us from the starting coedge to a nearby entity. In the figure above (B) the we show a walk from the red starting coedge to its mating coedge, to the next coedge in the loop, to mating coedge and finally to the parent face. Using multiple topological walks we can define a group of entities in the neighborhood of the starting coedge. The instructions which define the neighboring entities are marked in the figure (C). The BRepNet implementation allows you to define any group of entities using a kernel file. See here for an example of a kernel file for kernel entities shown above.

Convolution

The BRepNet convolution algorithm concatenates feature vectors from the entities defined in the kernel file relative to the starting coedge (red). The resulting vector is passed through an MLP and the output becomes the hidden state for this coedge in the next network layer. The procedure is repeated for each coedge in the model, then new hidden state vectors for the faces and edges are generated by pooling the coedge hidden states onto their parent faces and edges. See the paper for more details. The actual implementation of the BRepNet convolution can been seen in the BRepNetLayer.forward() method.

Citing this work

@inproceedings{lambourne2021brepnet,
 title = {BRepNet: A Topological Message Passing System for Solid Models},
 author = {Joseph G. Lambourne and Karl D.D. Willis and Pradeep Kumar Jayaraman and Aditya Sanghi and Peter Meltzer and Hooman Shayani},
 eprint = {2104.00706},
 eprinttype = {arXiv},
 eprintclass = {cs.LG},
 booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
}

Quickstart

Setting up the environment

git clone https://github.com/AutodeskAILab/BRepNet.git
cd BRepNet
conda env create -f environment.yml
conda activate brepnet

For GPU training you will need to change the pytorch install to include your cuda version. i.e.

conda install pytorch cudatoolkit=11.1 -c pytorch -c conda-forge

For training with multiple workers you may hit errors of the form OSError: [Errno 24] Too many open files. In this case you need to increase the number of available file handles on the machine using

ulimit -Sn 10000

I find I need to set the limit to 10000 for 10 worker threads.

Download the dataset

You can download the step distribution of the Fusion 360 Gallery segmentation dataset from this link. The zip is 3.2Gb. Alternatively download using curl

cd /path/to/where_you_keep_data/
curl https://fusion-360-gallery-dataset.s3-us-west-2.amazonaws.com/segmentation/s2.0.0/s2.0.0.zip -o s2.0.0.zip
unzip s2.0.0.zip

If you are interested in building your own dataset using other step files then the procedure is documented here

Processing the STEP data

Run the quickstart script to extract topology and geometry information from the step data ready to train the network.

cd BRepNet/
python -m pipeline.quickstart --dataset_dir /path/to/where_you_keep_data/s2.0.0 --num_workers 5

This may take up to 10 minutes to complete.

Training the model

You are then ready to train the model. The quickstart script should exit telling you a default command to use which should be something like

python -m train.train \
  --dataset_file /path/to/where_you_keep_data/s2.0.0/processed/dataset.json \
  --dataset_dir  /path/to/where_you_keep_data/s2.0.0/processed/ \
  --max_epochs 50

You may want to adjust the --num_workers and --gpus parameters to match your machine. The model runs with the pytorch-lightning ddp-spawn mode, so you can choose either 1 worker thread and multiple gpus or multiple threads and a single gpu. The options and hyper-parameters for BRepNet can be seen in BRepNet.add_model_specific_args in brepnet.py. For a full list of all hyper-parameters including those defined in pytorch-lightning see

python -m train.train --help

Monitoring the loss, accuracy and IoU

By default BRepNet will log data to tensorboard in a folder called logs. Each time you run the model the logs will be placed in a separate folder inside the logs directory with paths based on the date and time. At the start of training the path to the log folder will be printed into the shell. To monitory the process you can use

cd BRepNet
tensorboard --logdir logs

A trained model is also saved every time the validation loss reaches a minimum. The model will be in the same folder as the tensorboard logs

./logs/<date>/<time>/checkpoints

Testing the network

python -m eval.test \
  --dataset_file /path/to/dataset_file.json \
  --dataset_dir /path/to/data_dir \
  --model BRepNet/logs/<day>/<time>/checkpoints/epoch=x-step=x.ckpt

Visualizing the segmentation data

You can visualize the segmentation data using a Jupyter notebook and the tools in the visualization folder. An example of how to view the segmentation information in the dataset is here.

Evaluating the segmentation on your own STEP data

To evaluate the model on you own step data you can use the script evaluate_folder.py

python -m eval.evaluate_folder  \
  --dataset_dir ./example_files/step_examples
  --dataset_file ./example_files/feature_standardization/s2.0.0_step_all_features.json \
  --model ./example_files/pretrained_models/pretrained_s2.0.0_step_all_features_0519_073100.ckpt

This will loop over all step or stp files in ./example_files/step_examples and create "logits" files in example_files/step_examples/temp_working/logits. The logits files contain one row for each face in the step data. The columns give the probabilities that the corresponding face belongs to a given segment.

The notebook find_and_display_segmentation.ipynb runs through the entire process of evaluating the model and displaying the predicted segmentation.

Running the tests

If you need to run the tests then this can be done using

python -m unittest

The new data-pipeline based on Open Cascade

The original BRepNet pipeline used proprietary code to process data from solid models and convert these to network input. In an effort to make this BRepNet as reusable as possible we have converted this pipeline to work with Open Cascade and python OCC. As with any kind of translation between solid model formats, the translation to step introduces some differences in the data. These are documented here. When training with the default options given above you will obtain very similar numbers to the ones published.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Autodesk AI Lab
Autodesk AI Lab
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022