LIVECell - A large-scale dataset for label-free live cell segmentation

Related tags

Deep LearningLIVECell
Overview

LIVECell dataset

This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale dataset for label-free live cell segmentation" by Edlund et. al. 2021.

Background

Light microscopy is a cheap, accessible, non-invasive modality that when combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells enables exploration of complex biological questions, but this requires sophisticated imaging processing pipelines due to the low contrast and high object density. Deep learning-based methods are considered state-of-the-art for most computer vision problems but require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. To address this gap we present LIVECell, a high-quality, manually annotated and expert-validated dataset that is the largest of its kind to date, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its utility, we provide convolutional neural network-based models trained and evaluated on LIVECell.

How to access LIVECell

All images in LIVECell are available following this link (requires 1.3 GB). Annotations for the different experiments are linked below. To see a more details regarding benchmarks and how to use our models, see this link.

LIVECell-wide train and evaluate

Annotation set URL
Training set link
Validation set link
Test set link

Single cell-type experiments

Cell Type Training set Validation set Test set
A172 link link link
BT474 link link link
BV-2 link link link
Huh7 link link link
MCF7 link link link
SH-SHY5Y link link link
SkBr3 link link link
SK-OV-3 link link link

Dataset size experiments

Split URL
2 % link
4 % link
5 % link
25 % link
50 % link

Comparison to fluorescence-based object counts

The images and corresponding json-file with object count per image is available together with the raw fluorescent images the counts is based on.

Cell Type Images Counts Fluorescent images
A549 link link link
A172 link link link

Download all of LIVECell

The LIVECell-dataset and trained models is stored in an Amazon Web Services (AWS) S3-bucket. It is easiest to download the dataset if you have an AWS IAM-user using the AWS-CLI in the folder you would like to download the dataset to by simply:

aws s3 sync s3://livecell-dataset .

If you do not have an AWS IAM-user, the procedure is a little bit more involved. We can use curl to make an HTTP-request to get the S3 XML-response and save to files.xml:

files.xml ">
curl -H "GET /?list-type=2 HTTP/1.1" \
     -H "Host: livecell-dataset.s3.eu-central-1.amazonaws.com" \
     -H "Date: 20161025T124500Z" \
     -H "Content-Type: text/plain" http://livecell-dataset.s3.eu-central-1.amazonaws.com/ > files.xml

We then get the urls from files using grep:

)[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt ">
grep -oPm1 "(?<=
   
    )[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt

   

Then download the files you like using wget.

File structure

The top-level structure of the files is arranged like:

/livecell-dataset/
    ├── LIVECell_dataset_2021  
    |       ├── annotations/
    |       ├── models/
    |       ├── nuclear_count_benchmark/	
    |       └── images.zip  
    ├── README.md  
    └── LICENSE

LIVECell_dataset_2021/images

The images of the LIVECell-dataset are stored in /livecell-dataset/LIVECell_dataset_2021/images.zip along with their annotations in /livecell-dataset/LIVECell_dataset_2021/annotations/.

Within images.zip are the training/validation-set and test-set images are completely separate to facilitate fair comparison between studies. The images require 1.3 GB disk space unzipped and are arranged like:

images/
    ├── livecell_test_images
    |       └── 
   
    
    |               └── 
    
     _Phase_
     
      _
      
       _
       
        _
        
         .tif └── livecell_train_val_images └── 
          
         
        
       
      
     
    
   

Where is each of the eight cell-types in LIVECell (A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3, SKOV3). Wells are the location in the 96-well plate used to culture cells, indicates location in the well where the image was acquired, the time passed since the beginning of the experiment to image acquisition and index of the crop of the original larger image. An example image name is A172_Phase_C7_1_02d16h00m_2.tif, which is an image of A172-cells, grown in well C7 where the image is acquired in position 1 two days and 16 hours after experiment start (crop position 2).

LIVECell_dataset_2021/annotations/

The annotations of LIVECell are prepared for all tasks along with the training/validation/test splits used for all experiments in the paper. The annotations require 2.1 GB of disk space and are arranged like:

annotations/
    ├── LIVECell
    |       └── livecell_coco_
   
    .json
    ├── LIVECell_single_cells
    |       └── 
    
     
    |               └── 
     
      .json
    └── LIVECell_dataset_size_split
            └── 
      
       _train
       
        percent.json 
       
      
     
    
   
  • annotations/LIVECell contains the annotations used for the LIVECell-wide train and evaluate task.
  • annotations/LIVECell_single_cells contains the annotations used for Single cell type train and evaluate as well as the Single cell type transferability tasks.
  • annotations/LIVECell_dataset_size_split contains the annotations used to investigate the impact of training set scale.

All annotations are in Microsoft COCO Object Detection-format, and can for instance be parsed by the Python package pycocotools.

models/

ALL models trained and evaluated for tasks associated with LIVECell are made available for wider use. The models are trained using detectron2, Facebook's framework for object detection and instance segmentation. The models require 15 GB of disk space and are arranged like:

models/
   └── Anchor_
   
    
            ├── ALL/
            |    └──
    
     .pth
            └── 
     
      /
                 └──
      
       .pths
       

      
     
    
   

Where each .pth is a binary file containing the model weights.

configs/

The config files for each model can be found in the LIVECell github repo

LIVECell
    └── Anchor_
   
    
            ├── livecell_config.yaml
            ├── a172_config.yaml
            ├── bt474_config.yaml
            ├── bv2_config.yaml
            ├── huh7_config.yaml
            ├── mcf7_config.yaml
            ├── shsy5y_config.yaml
            ├── skbr3_config.yaml
            └── skov3_config.yaml

   

Where each config file can be used to reproduce the training done or in combination with our model weights for usage, for more info see the usage section.

nuclear_count_benchmark/

The images and fluorescence-based object counts are stored as the label-free images in a zip-archive and the corresponding counts in a json as below:

nuclear_count_benchmark/
    ├── A172.zip
    ├── A172_counts.json
    ├── A172_fluorescent_images.zip
    ├── A549.zip
    ├── A549_counts.json 
    └── A549_fluorescent_images.zip

The json files are on the following format:

": " " } ">
{
    "
     
      ": "
      
       "
}

      
     

Where points to one of the images in the zip-archive, and refers to the object count according fluorescent nuclear labels.

LICENSE

All images, annotations and models associated with LIVECell are published under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

All software source code associated associated with LIVECell are published under the MIT License.

Owner
Sartorius Corporate Research
Sartorius Corporate Research
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023