Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Related tags

Deep Learningfuzzer
Overview

Ankou

Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering the combination of branches during program execution. The details of the technique can be found in our paper "Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference", which is published in ICSE 2020.

Dependencies.

Go

Ankou is written solely in Go and thus requires its installation. Be sure to configure this GOPATH environment variable, for example to ~/go directory.

AFL

Ankou relies on AFL instrumentation: fuzzed targets needs to compiled using afl-gcc or afl-clang. To install AFL:

wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz
tar xf afl-latest.tgz
cd afl-2.52b
make
# The last command is optional, but you'll need to provide the absolute path to
# the compiler in the configure step below if you don't install AFL compiler.
sudo make install

GDB

For the triaging gdb is required, and ASLR needs to be deactivated:

sudo echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Note that when using docker containers, this needs to be run in the host.

Installation

Once Go and AFL are installed, you can get Ankou by:

go get github.com/SoftSec-KAIST/Ankou   # Clone Ankou and its dependencies
go build github.com/SoftSec-KAIST/Ankou # Compile Ankou
Note: If getting Ankou from another location, this needs to be done manually:
mkdir -p $GOPATH/src/github.com/SoftSec-KAIST
cd $GOPATH/src/github.com/SoftSec-KAIST
git clone REPO  # By default REPO is https://github.com/SoftSec-KAIST/Ankou
cd Ankou
go get .    # Get dependencies
go build .  # Compile

Usage

Now we are ready to fuzz. We first to compile any target we want with afl-gcc or afl-clang. Let's take the classical starting example for fuzzing, binutils:

wget https://mirror.ibcp.fr/pub/gnu/binutils/binutils-2.33.1.tar.xz
tar xf binutils-2.33.1.tar.xz
cd binutils-2.33.1
CC=afl-gcc CXX=afl-g++ ./configure --prefix=`pwd`/install
make -j
make install

Now we are ready to run Ankou:

cd install/bin
mkdir seeds; cp elfedit seeds/ # Put anything in the seeds folder.
go run github.com/SoftSec-KAIST/Ankou -app ./readelf -args "-a @@" -i seeds -o out
# Or use the binary we compiled above:
/path/to/Ankou -app ./readelf -args "-a @@" -i seeds -o out

Evaluation Reproduction

Once Ankou is installed, in order to reproduce the Ankou evaluation:

  1. Compile the 24 packages mentioned in the paper at the same version or commit using afl-gcc. All the packages' source can be found with the same version used in Ankou evaluation at https://github.com/SoftSec-KAIST/Ankou-Benchmark. Additionnally, this repository includes the seeds used to initialize the evalution fuzzing campaigns.
  2. Run the produced subjects with the commands found in benchmark/configuration.json. benchmark/rq1_rq3.json only contains the 24 subjets used for Research Question 1 and 3 of the paper.
  3. Analyze Ankou output directory for results. Crashes are listed in $OUTPUT_DIR/crashes-* and found seeds in $OUTPUT_DIR/seeds-*. Statistics of the fuzzing campaign can be found in the $OUTPUT_DIR/status* directory CSV files. The edge_n value of receiver.csv represents the branch coverage. And the execN column of seed_manager.csv represents the total number of test cases executed so far. Divide it by the time column to obtain the throughout.

There are too many programs in our benchmark, so we will use only one package in this example: cflow.

  1. Compilation.
git clone https://github.com/SoftSec-KAIST/Ankou-Benchmark
cd Ankou-Benchmark
tar xf seeds.tar.xz
cd sources
tar xf cflow-1.6.tar.xz
cd cflow-1.6
CC=afl-gcc CXX=afl-g++ ./configure --prefix=`pwd`/build
make -j
make install
cd ../../..
  1. Preparation of the fuzzing campaign.
mkdir fuzzrun
cp Ankou-Benchmark/sources/cflow-1.6/build/bin/cflow fuzzrun
cp -r Ankou-Benchmark/seeds/cflow fuzzrun/seeds
  1. Run the campaign. The above starts a 24 hours fuzzing campaign. The '-dur' option can be adjusted, or Ankou interrupted earlier. In this version of cflow, and initialized with these seeds, a crash should be found in less than an hour.
cd fuzzrun
go run github.com/SoftSec-KAIST/Ankou -app cflow -args "-o /dev/null @@" \
    -i seeds -threads 1 -o cflow_out -dur 24h
  1. Results analysis
cd cflow_out/status_*
# Print the final branch coverage:
python -c "print(open('receiver.csv').readlines()[-1].split(',')[0])"
# Print the overall throughput:
python -c "last = open('seed_manager.csv').readlines()[-1].split(','); print(float(last[5])/int(last[6]))"
# Print effectiveness of the dynamic PCA (see RQ2):
python -c "last = open('receiver.csv').readlines()[-1].split(','); print('{}%'.format(100-100*float(last[2])/float(last[1])))"

Safe Stack Hash Triaging

Once the environment is setup, the scripts works in two steps:

  1. Run the binary on the crashing input to produce a core file. Using ulimit -c unlimited ensures the core to be dumped.
  2. Use the scripts in the triage folder of this repository:
cd $GOPATH/src/github.com/SoftSec-KAIST/Ankou/triage
gdb -x triage.py -x triage.gdb -batch -c /path/to/core /path/to/binary
cat hash.txt # The stack hashes are found in this text file.
Owner
SoftSec Lab
SoftSec Lab @ KAIST
SoftSec Lab
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023