Sapiens is a human antibody language model based on BERT.

Overview

Sapiens: Human antibody language model

    ____              _                
   / ___|  __ _ _ __ (_) ___ _ __  ___ 
   \___ \ / _` | '_ \| |/ _ \ '_ \/ __|
    ___| | |_| | |_| | |  __/ | | \__ \
   |____/ \__,_|  __/|_|\___|_| |_|___/
               |_|                    

Build & Test Pip Install Latest release

Sapiens is a human antibody language model based on BERT.

Learn more in the Sapiens, OASis and BioPhi in our publication:

David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman, Daniel Svozil & Danny A. Bitton (2022) BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning, mAbs, 14:1, DOI: https://doi.org/10.1080/19420862.2021.2020203

For more information about BioPhi, see the BioPhi repository

Features

  • Infilling missing residues in human antibody sequences
  • Suggesting mutations (in frameworks as well as CDRs)
  • Creating vector representations (embeddings) of residues or sequences

Sapiens Antibody t-SNE Example

Usage

Install Sapiens using pip:

# Recommended: Create dedicated conda environment
conda create -n sapiens python=3.8
conda activate sapiens
# Install Sapiens
pip install sapiens

❗️ Python 3.7 or 3.8 is currently required due to fairseq bug in Python 3.9 and above: pytorch/fairseq#3535

Antibody sequence infilling

Positions marked with * or X will be infilled with the most likely human residues, given the rest of the sequence

import sapiens

best = sapiens.predict_masked(
    '**QLV*SGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS',
    'H'
)
print(best)
# QVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS

Suggesting mutations

Return residue scores for a given sequence:

import sapiens

scores = sapiens.predict_scores(
    '**QLV*SGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS',
    'H'
)
scores.head()
#           A         C         D         E  ...
# 0  0.003272  0.004147  0.004011  0.004590  ... <- based on masked input
# 1  0.012038  0.003854  0.006803  0.008174  ... <- based on masked input
# 2  0.003384  0.003895  0.003726  0.004068  ... <- based on Q input
# 3  0.004612  0.005325  0.004443  0.004641  ... <- based on L input
# 4  0.005519  0.003664  0.003555  0.005269  ... <- based on V input
#
# Scores are given both for residues that are masked and that are present. 
# When inputting a non-human antibody sequence, the output scores can be used for humanization.

Antibody sequence embedding

Get a vector representation of each position in a sequence

import sapiens

residue_embed = sapiens.predict_residue_embedding(
    'QVKLQESGAELARPGASVKLSCKASGYTFTNYWMQWVKQRPGQGLDWIGAIYPGDGNTRYTHKFKGKATLTADKSSSTAYMQLSSLASEDSGVYYCARGEGNYAWFAYWGQGTTVTVSS', 
    'H', 
    layer=None
)
residue_embed.shape
# (layer, position in sequence, features)
# (5, 119, 128)

Get a single vector for each sequence

seq_embed = sapiens.predict_sequence_embedding(
    'QVKLQESGAELARPGASVKLSCKASGYTFTNYWMQWVKQRPGQGLDWIGAIYPGDGNTRYTHKFKGKATLTADKSSSTAYMQLSSLASEDSGVYYCARGEGNYAWFAYWGQGTTVTVSS', 
    'H', 
    layer=None
)
seq_embed.shape
# (layer, features)
# (5, 128)

Notebooks

Try out Sapiens in your browser using these example notebooks:

Links Notebook Description
01_sapiens_antibody_infilling Predict missing positions in an antibody sequence
02_sapiens_antibody_embedding Get vector representations and visualize them using t-SNE

Acknowledgements

Sapiens is based on antibody repertoires from the Observed Antibody Space:

Kovaltsuk, A., Leem, J., Kelm, S., Snowden, J., Deane, C. M., & Krawczyk, K. (2018). Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. The Journal of Immunology, 201(8), 2502–2509. https://doi.org/10.4049/jimmunol.1800708

Owner
Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.
Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022