StarGAN - Official PyTorch Implementation

Overview

StarGAN - Official PyTorch Implementation

***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 *****

This repository provides the official PyTorch implementation of the following paper:

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi1,2, Minje Choi1,2, Munyoung Kim2,3, Jung-Woo Ha2, Sung Kim2,4, Jaegul Choo1,2    
1Korea University, 2Clova AI Research, NAVER Corp.
3The College of New Jersey, 4Hong Kong University of Science and Technology
https://arxiv.org/abs/1711.09020

Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

Dependencies

Downloading datasets

To download the CelebA dataset:

git clone https://github.com/yunjey/StarGAN.git
cd StarGAN/
bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

Training networks

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

# Train StarGAN using the CelebA dataset
python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

# Test StarGAN using the CelebA dataset
python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

# Train StarGAN using the RaFD dataset
python main.py --mode train --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/train \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

# Test StarGAN using the RaFD dataset
python main.py --mode test --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/test \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

# Train StarGAN using both CelebA and RaFD datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

# Test StarGAN using both CelebA and RaFD datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

# Train StarGAN on custom datasets
python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

# Test StarGAN on custom datasets
python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

Using pre-trained networks

To download a pre-trained model checkpoint, run the script below. The pre-trained model checkpoint will be downloaded and saved into ./stargan_celeba_128/models directory.

$ bash download.sh pretrained-celeba-128x128

To translate images using the pre-trained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_128/results directory.

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_128/models' \
                 --result_dir='stargan_celeba_128/results'

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2018stargan,
author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}

Acknowledgements

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

Owner
Yunjey Choi
Yunjey Choi
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
1 Jun 28, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022