Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

Overview

image


OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recognition. We aim to make ASR technology easier to use for everyone.

OpenSpeech is backed by the two powerful libraries — PyTorch-Lightning and Hydra. Various features are available in the above two libraries, including Multi-GPU and TPU training, Mixed-precision, and hierarchical configuration management.

We appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Why should I use OpenSpeech?

  1. Easy-to-experiment with the famous ASR models.
    • Supports 10+ models and is continuously updated.
    • Low barrier to entry for educators and practitioners.
    • Save time for researchers who want to conduct various experiments.
  2. Provides recipes for the most widely used languages, English, Chinese, and + Korean.
    • LibriSpeech - 1,000 hours of English dataset most widely used in ASR tasks.
    • AISHELL-1 - 170 hours of Chinese Mandarin speech corpus.
    • KsponSpeech - 1,000 hours of Korean open-domain dialogue speech.
  3. Easily customize a model or a new dataset to your needs:
    • The default hparams of the supported models are provided but can be easily adjusted.
    • Easily create a custom model by combining modules that are already provided.
    • If you want to use the new dataset, you only need to define a pl.LightingDataModule and Vocabulary classes.
  4. Audio processing
    • Representative audio features such as Spectrogram, Mel-Spectrogram, Filter-Bank, and MFCC can be used easily.
    • Provides a variety of augmentation, including SpecAugment, Noise Injection, and Audio Joining.

Why shouldn't I use OpenSpeech?

  • This library provides code for learning ASR models, but does not provide APIs by pre-trained models.
  • We do not provide pre-training mechanisms such as Wav2vec 2.0 since pre-training costs a lot of computation. Though computation optimization is very important, and this library does not provide that optimization.

Model architectures

We support all the models below. Note that, the important concepts of the model have been implemented to match, but the details of the implementation may vary.

  1. DeepSpeech2 (from Baidu Research) released with paper Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, by Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, Zhenyao Zhu.
  2. RNN-Transducer (from University of Toronto) released with paper Sequence Transduction with Recurrent Neural Networks, by Alex Graves.
  3. Listen Attend Spell (from Carnegie Mellon University and Google Brain) released with paper Listen, Attend and Spell, by William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals.
  4. Location-aware attention based Listen Attend Spell (from University of Wrocław and Jacobs University and Universite de Montreal) released with paper Attention-Based Models for Speech Recognition, by Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio.
  5. Joint CTC-Attention based Listen Attend Spell (from Mitsubishi Electric Research Laboratories and Carnegie Mellon University) released with paper Joint CTC-Attention based End-to-End Speech Recognition using Multi-task Learning, by Suyoun Kim, Takaaki Hori, Shinji Watanabe.
  6. Deep CNN Encoder with Joint CTC-Attention Listen Attend Spell (from Mitsubishi Electric Research Laboratories and Massachusetts Institute of Technology and Carnegie Mellon University) released with paper Advances in Joint CTC-Attention based End-to-End Speech Recognition with a Deep CNN Encoder and RNN-LM, by Takaaki Hori, Shinji Watanabe, Yu Zhang, William Chan.
  7. Multi-head attention based Listen Attend Spell (from Google) released with paper State-of-the-art Speech Recognition With Sequence-to-Sequence Models, by Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski, Michiel Bacchiani.
  8. Speech-Transformer (from University of Chinese Academy of Sciences and Institute of Automation and Chinese Academy of Sciences) released with paper Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition, by Linhao Dong; Shuang Xu; Bo Xu.
  9. VGG-Transformer (from Facebook AI Research) released with paper Transformers with convolutional context for ASR, by Abdelrahman Mohamed, Dmytro Okhonko, Luke Zettlemoyer.
  10. Transformer with CTC (from NTT Communication Science Laboratories, Waseda University, Center for Language and Speech Processing, Johns Hopkins University) released with paper Improving Transformer-based End-to-End Speech Recognition with Connectionist Temporal Classification and Language Model Integration, by Shigeki Karita, Nelson Enrique Yalta Soplin, Shinji Watanabe, Marc Delcroix, Atsunori Ogawa, Tomohiro Nakatani.
  11. Joint CTC-Attention based Transformer(from NTT Corporation) released with paper Self-Distillation for Improving CTC-Transformer-based ASR Systems, by Takafumi Moriya, Tsubasa Ochiai, Shigeki Karita, Hiroshi Sato, Tomohiro Tanaka, Takanori Ashihara, Ryo Masumura, Yusuke Shinohara, Marc Delcroix.
  12. Jasper (from NVIDIA and New York University) released with paper Jasper: An End-to-End Convolutional Neural Acoustic Model, by Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M. Cohen, Huyen Nguyen, Ravi Teja Gadde.
  13. QuartzNet (from NVIDIA and Univ. of Illinois and Univ. of Saint Petersburg) released with paper QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions, by Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, Yang Zhang.
  14. Transformer Transducer (from Facebook AI) released with paper Transformer-Transducer: End-to-End Speech Recognition with Self-Attention, by Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer.
  15. Conformer (from Google) released with paper Conformer: Convolution-augmented Transformer for Speech Recognition, by Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, Ruoming Pang.
  16. Conformer with CTC (from Northwestern Polytechnical University and University of Bordeaux and Johns Hopkins University and Human Dataware Lab and Kyoto University and NTT Corporation and Shanghai Jiao Tong University and Chinese Academy of Sciences) released with paper Recent Developments on ESPNET Toolkit Boosted by Conformer, by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, Yuekai Zhang.
  17. Conformer with LSTM Decoder (from IBM Research AI) released with paper On the limit of English conversational speech recognition, by Zoltán Tüske, George Saon, Brian Kingsbury.

Create custom model

Open speech can easily create custom models using the encoder and decoder provided.
Below is an example of a custom model that combines Transformer encoder and LSTM decoder.

Get Started

We use Hydra to control all the training configurations. If you are not familiar with Hydra we recommend visiting the Hydra website. Generally, Hydra is an open-source framework that simplifies the development of research applications by providing the ability to create a hierarchical configuration dynamically. If you want to know how we used Hydra, we recommend you to read here.

Supported Datasets

We support LibriSpeech, KsponSpeech, and AISHELL-1.

LibriSpeech is a corpus of approximately 1,000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data was derived from reading audiobooks from the LibriVox project, and has been carefully segmented and aligned.

Aishell is an open-source Chinese Mandarin speech corpus published by Beijing Shell Shell Technology Co.,Ltd. 400 people from different accent areas in China were invited to participate in the recording, which was conducted in a quiet indoor environment using high fidelity microphone and downsampled to 16kHz.

KsponSpeech is a large-scale spontaneous speech corpus of Korean. This corpus contains 969 hours of general open-domain dialog utterances, spoken by about 2,000 native Korean speakers in a clean environment. All data were constructed by recording the dialogue of two people freely conversing on a variety of topics and manually transcribing the utterances. To start training, the KsponSpeech dataset must be prepared in advance. To download KsponSpeech, you need permission from AI Hub.

Pre-processed Manifest Files

Dataset Unit Manifest Vocab SP-Model
LibriSpeech character [Link] [Link] -
LibriSpeech subword [Link] [Link] [Link]
AISHELL-1 character [Link] [Link] -
KsponSpeech character [Link] [Link] -
KsponSpeech subword [Link] [Link] [Link]
KsponSpeech grapheme [Link] [Link] -

KsponSpeech needs permission from AI Hub.
Please send e-mail including the approved screenshot to [email protected].

Manifest File

  • Manifest file format:
LibriSpeech/test-other/8188/269288/8188-269288-0052.flac        ▁ANNIE ' S ▁MANNER ▁WAS ▁VERY ▁MYSTERIOUS       4039 20 5 531 17 84 2352
LibriSpeech/test-other/8188/269288/8188-269288-0053.flac        ▁ANNIE ▁DID ▁NOT ▁MEAN ▁TO ▁CONFIDE ▁IN ▁ANYONE ▁THAT ▁NIGHT ▁AND ▁THE ▁KIND EST ▁THING ▁WAS ▁TO ▁LEAVE ▁HER ▁A LONE    4039 99 35 251 9 4758 11 2454 16 199 6 4 323 200 255 17 9 370 30 10 492
LibriSpeech/test-other/8188/269288/8188-269288-0054.flac        ▁TIRED ▁OUT ▁LESLIE ▁HER SELF ▁DROPP ED ▁A SLEEP        1493 70 4708 30 115 1231 7 10 1706
LibriSpeech/test-other/8188/269288/8188-269288-0055.flac        ▁ANNIE ▁IS ▁THAT ▁YOU ▁SHE ▁CALL ED ▁OUT        4039 34 16 25 37 208 7 70
LibriSpeech/test-other/8188/269288/8188-269288-0056.flac        ▁THERE ▁WAS ▁NO ▁REPLY ▁BUT ▁THE ▁SOUND ▁OF ▁HURRY ING ▁STEPS ▁CAME ▁QUICK ER ▁AND ▁QUICK ER ▁NOW ▁AND ▁THEN ▁THEY ▁WERE ▁INTERRUPTED ▁BY ▁A ▁GROAN     57 17 56 1368 33 4 489 8 1783 14 1381 133 571 49 6 571 49 82 6 76 45 54 2351 44 10 3154
LibriSpeech/test-other/8188/269288/8188-269288-0057.flac        ▁OH ▁THIS ▁WILL ▁KILL ▁ME ▁MY ▁HEART ▁WILL ▁BREAK ▁THIS ▁WILL ▁KILL ▁ME 299 46 71 669 50 41 235 71 977 46 71 669 50
...
...

Training examples

You can simply train with LibriSpeech dataset like below:

  • Example1: Train the conformer-lstm model with filter-bank features on GPU.
$ python ./openspeech_cli/hydra_train.py \
    dataset=librispeech \
    dataset.dataset_download=True \
    dataset.dataset_path=$DATASET_PATH \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    vocab=libri_subword \
    model=conformer_lstm \
    audio=fbank \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=gpu \
    criterion=joint_ctc_cross_entropy

You can simply train with KsponSpeech dataset like below:

  • Example2: Train the listen-attend-spell model with mel-spectrogram features On TPU:
$ python ./openspeech_cli/hydra_train.py \
    dataset=ksponspeech \
    dataset.dataset_path=$DATASET_PATH \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    dataset.test_dataset_path=$TEST_DATASET_PATH \
    dataset.test_manifest_dir=$TEST_MANIFEST_DIR \
    vocab=kspon_character \
    model=listen_attend_spell \
    audio=melspectrogram \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=tpu \
    criterion=joint_ctc_cross_entropy

You can simply train with AISHELL-1 dataset like below:

  • Example3: Train the quartznet model with mfcc features On GPU with FP16:
$ python ./openspeech_cli/hydra_train.py \
    dataset=aishell \
    dataset.dataset_path=$DATASET_PATH \
    dataset.dataset_download=True \
    dataset.manifest_file_path=$MANIFEST_FILE_PATH \  
    vocab=aishell_character \
    model=quartznet15x5 \
    audio=mfcc \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=gpu-fp16 \
    criterion=ctc

Evaluation examples

  • Example1: Evaluation the listen_attend_spell model:
$ python ./openspeech_cli/hydra_eval.py \
    audio=melspectrogram \
    eval.model_name=listen_attend_spell \
    eval.dataset_path=$DATASET_PATH \
    eval.checkpoint_path=$CHECKPOINT_PATH \
    eval.manifest_file_path=$MANIFEST_FILE_PATH  
  • Example2: Evaluation the listen_attend_spell, conformer_lstm models with ensemble:
$ python ./openspeech_cli/hydra_eval.py \
    audio=melspectrogram \
    eval.model_names=(listen_attend_spell, conformer_lstm) \
    eval.dataset_path=$DATASET_PATH \
    eval.checkpoint_paths=($CHECKPOINT_PATH1, $CHECKPOINT_PATH2) \
    eval.ensemble_weights=(0.3, 0.7) \
    eval.ensemble_method=weighted \
    eval.manifest_file_path=$MANIFEST_FILE_PATH  

Installation

This project recommends Python 3.7 or higher.
We recommend creating a new virtual environment for this project (using virtual env or conda).

Prerequisites

  • numpy: pip install numpy (Refer here for problem installing Numpy).
  • pytorch: Refer to PyTorch website to install the version w.r.t. your environment.
  • librosa: conda install -c conda-forge librosa (Refer here for problem installing librosa)
  • torchaudio: pip install torchaudio==0.6.0 (Refer here for problem installing torchaudio)
  • sentencepiece: pip install sentencepiece (Refer here for problem installing sentencepiece)
  • pytorch-lightning: pip install pytorch-lightning (Refer here for problem installing pytorch-lightning)
  • hydra: pip install hydra-core --upgrade (Refer here for problem installing hydra)
  • warp-rnnt: Refer to warp-rnnt page to install the library.
  • ctcdecode: Refer to ctcdecode page to install the library.

Install from pypi

You can install OpenSpeech with pypi.

pip install openspeech-core

Install from source

Currently we only support installation from source code using setuptools. Checkout the source code and run the
following commands:

$ ./install.sh

Install Apex (for 16-bit training)

For faster training install NVIDIA's apex library:

$ git clone https://github.com/NVIDIA/apex
$ cd apex

# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch

# see available modules
module avail

# load correct CUDA before install
module load cuda-10.0
# ------------------------

# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0

$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Troubleshoots and Contributing

If you have any questions, bug reports, and feature requests, please open an issue on Github.

We appreciate any kind of feedback or contribution. Feel free to proceed with small issues like bug fixes, documentation improvement. For major contributions and new features, please discuss with the collaborators in corresponding issues.

Code Style

We follow PEP-8 for code style. Especially the style of docstrings is important to generate documentation.

License

This project is licensed under the MIT LICENSE - see the LICENSE.md file for details

Citation

If you use the system for academic work, please cite:

@GITHUB{2021-OpenSpeech,
  author       = {Kim, Soohwan and Ha, Sangchun and Cho, Soyoung},
  author email = {[email protected], [email protected], [email protected]}
  title        = {OpenSpeech: Open-Source Toolkit for End-to-End Speech Recognition},
  howpublished = {\url{https://github.com/sooftware/OpenSpeech}},
  docs         = {\url{https://sooftware.github.io/OpenSpeech}},
  year         = {2021}
}
You might also like...
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Text to speech is a process to convert any text into voice. Text to speech project takes words on digital devices and convert them into audio. Here I have used Google-text-to-speech library popularly known as gTTS library to convert text file to .mp3 file. Hope you like my project!
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

An open source library for deep learning end-to-end dialog systems and chatbots.
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

Releases(v0.3.0)
Owner
Soohwan Kim
Toward human-like A.I.
Soohwan Kim
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Seonghwan Kim 24 Sep 11, 2022