Extract Keywords from sentence or Replace keywords in sentences.

Overview

FlashText

Build Status Documentation Status Version Test coverage license

This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm.

Installation

$ pip install flashtext

API doc

Documentation can be found at FlashText Read the Docs.

Usage

Extract keywords
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> # keyword_processor.add_keyword(<unclean name>, <standardised name>)
>>> keyword_processor.add_keyword('Big Apple', 'New York')
>>> keyword_processor.add_keyword('Bay Area')
>>> keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.')
>>> keywords_found
>>> # ['New York', 'Bay Area']
Replace keywords
>>> keyword_processor.add_keyword('New Delhi', 'NCR region')
>>> new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.')
>>> new_sentence
>>> # 'I love New York and NCR region.'
Case Sensitive example
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor(case_sensitive=True)
>>> keyword_processor.add_keyword('Big Apple', 'New York')
>>> keyword_processor.add_keyword('Bay Area')
>>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.')
>>> keywords_found
>>> # ['Bay Area']
Span of keywords extracted
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword('Big Apple', 'New York')
>>> keyword_processor.add_keyword('Bay Area')
>>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.', span_info=True)
>>> keywords_found
>>> # [('New York', 7, 16), ('Bay Area', 21, 29)]
Get Extra information with keywords extracted
>>> from flashtext import KeywordProcessor
>>> kp = KeywordProcessor()
>>> kp.add_keyword('Taj Mahal', ('Monument', 'Taj Mahal'))
>>> kp.add_keyword('Delhi', ('Location', 'Delhi'))
>>> kp.extract_keywords('Taj Mahal is in Delhi.')
>>> # [('Monument', 'Taj Mahal'), ('Location', 'Delhi')]
>>> # NOTE: replace_keywords feature won't work with this.
No clean name for Keywords
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword('Big Apple')
>>> keyword_processor.add_keyword('Bay Area')
>>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.')
>>> keywords_found
>>> # ['Big Apple', 'Bay Area']
Add Multiple Keywords simultaneously
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>>     "java": ["java_2e", "java programing"],
>>>     "product management": ["PM", "product manager"]
>>> }
>>> # {'clean_name': ['list of unclean names']}
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> # Or add keywords from a list:
>>> keyword_processor.add_keywords_from_list(["java", "python"])
>>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform')
>>> # output ['product management', 'java']
To Remove keywords
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>>     "java": ["java_2e", "java programing"],
>>>     "product management": ["PM", "product manager"]
>>> }
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> print(keyword_processor.extract_keywords('I am a product manager for a java_2e platform'))
>>> # output ['product management', 'java']
>>> keyword_processor.remove_keyword('java_2e')
>>> # you can also remove keywords from a list/ dictionary
>>> keyword_processor.remove_keywords_from_dict({"product management": ["PM"]})
>>> keyword_processor.remove_keywords_from_list(["java programing"])
>>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform')
>>> # output ['product management']
To check Number of terms in KeywordProcessor
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>>     "java": ["java_2e", "java programing"],
>>>     "product management": ["PM", "product manager"]
>>> }
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> print(len(keyword_processor))
>>> # output 4
To check if term is present in KeywordProcessor
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword('j2ee', 'Java')
>>> 'j2ee' in keyword_processor
>>> # output: True
>>> keyword_processor.get_keyword('j2ee')
>>> # output: Java
>>> keyword_processor['colour'] = 'color'
>>> keyword_processor['colour']
>>> # output: color
Get all keywords in dictionary
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword('j2ee', 'Java')
>>> keyword_processor.add_keyword('colour', 'color')
>>> keyword_processor.get_all_keywords()
>>> # output: {'colour': 'color', 'j2ee': 'Java'}

For detecting Word Boundary currently any character other than this \w [A-Za-z0-9_] is considered a word boundary.

To set or add characters as part of word characters
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword('Big Apple')
>>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.'))
>>> # ['Big Apple']
>>> keyword_processor.add_non_word_boundary('/')
>>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.'))
>>> # []

Test

$ git clone https://github.com/vi3k6i5/flashtext
$ cd flashtext
$ pip install pytest
$ python setup.py test

Build Docs

$ git clone https://github.com/vi3k6i5/flashtext
$ cd flashtext/docs
$ pip install sphinx
$ make html
$ # open _build/html/index.html in browser to view it locally

Why not Regex?

It's a custom algorithm based on Aho-Corasick algorithm and Trie Dictionary.

Benchmark

Time taken by FlashText to find terms in comparison to Regex.

https://thepracticaldev.s3.amazonaws.com/i/xruf50n6z1r37ti8rd89.png

Time taken by FlashText to replace terms in comparison to Regex.

https://thepracticaldev.s3.amazonaws.com/i/k44ghwp8o712dm58debj.png

Link to code for benchmarking the Find Feature and Replace Feature.

The idea for this library came from the following StackOverflow question.

Citation

The original paper published on FlashText algorithm.

@ARTICLE{2017arXiv171100046S,
   author = {{Singh}, V.},
    title = "{Replace or Retrieve Keywords In Documents at Scale}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1711.00046},
 primaryClass = "cs.DS",
 keywords = {Computer Science - Data Structures and Algorithms},
     year = 2017,
    month = oct,
   adsurl = {http://adsabs.harvard.edu/abs/2017arXiv171100046S},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

The article published on Medium freeCodeCamp.

Contribute

License

The project is licensed under the MIT license.

Owner
Vikash Singh
Software Engineer @ Google
Vikash Singh
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021