Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

Related tags

Deep Learningisvd
Overview

isvd

Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

If you find this code useful, you may cite us as:

@inproceedings{haija2021isvd,
  author={Sami Abu-El-Haija AND Hesham Mostafa AND Marcel Nassar AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  title={Implicit SVD for Graph Representation Learning},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}

To run link prediction on Stanford SNAP and node2vec datasets:

To embed with rank-32 SVD:

python3 run_snap_linkpred.py --dataset_name=ppi --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=32
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=32

To embed with rank 256 on half of the training edges, determine "best rank" based on the remaining half, then re-run sVD with the best rank on all of training: (note: negative dim causes this logic):

python3 run_snap_linkpred.py --dataset_name=ppi --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=-256
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=-256

To run semi-supervised node classification on Planetoid datasets

You must first download the planetoid dataset as:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

Afterwards, you may navigate back to this directory and run our code as:

python3 run_planetoid.py --dataset=ind.citeseer
python3 run_planetoid.py --dataset=ind.cora
python3 run_planetoid.py --dataset=ind.pubmed

To run link prediction on Stanford OGB DDI

python3 ogb_linkpred_sing_val_net.py

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset

To run link prediction on Stanford OGB ArXiv

As our code imports gttf, you must first clone it onto the repo:

git clone [email protected]:isi-usc-edu/gttf.git

Afterwards, you may run as:

python3 final_obgn_mixed_device.py --funetune_device='gpu:0'

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset. You may skip the finetune_device argument if you do not have a GPU installed.

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
LBK 35 Dec 26, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022