Local-Global Stratified Transformer for Efficient Video Recognition

Overview

DualFormer

This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model is built on a popular video package called mmaction2. This repo also refers to the code templates provided by PVT, Twins and Swin. This repo is released under the Apache 2.0 license.

Introduction

DualFormer is a Transformer architecture that can effectively and efficiently perform space-time attention for video recognition. Specifically, our DualFormer stratifies the full space-time attention into dual cascaded levels, i.e., to first learn fine-grained local space-time interactions among nearby 3D tokens, followed by the capture of coarse-grained global dependencies between the query token and the coarse-grained global pyramid contexts. Experimental results show the superiority of DualFormer on five video benchmarks against existing methods. In particular, DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least 3.2× fewer than existing methods with similar performances.

Installation & Requirement

Please refer to install.md for installation. The docker files are also provided for convenient usage - cuda10.1 and cuda11.0.

All models are trained on 8 Nvidia A100 GPUs. For example, training a DualFormer-T on Kinetics-400 takes ∼31 hours on 8 A100 GPUs, while training a larger model DualFormer-B on Kinetics-400 requires ∼3 days on 8 A100 GPUs.

Data Preparation

Please first see data_preparation.md for a general knowledge of data preparation.

  • For Kinetics-400/600, as these are dynamic datasets (videos may be removed from YouTube), we employ this repo to download the original files and the annotatoins. Only a few number of corrupted videos are removed (around 50).
  • For other datasets, i.e., HMDB-51, UCF-101 and Diving-48, we use the data downloader provided by mmaction2 as aforementioned.

The full supported datasets are listed below (more details in supported_datasets.md):

HMDB51 (Homepage) (ICCV'2011) UCF101 (Homepage) (CRCV-IR-12-01) ActivityNet (Homepage) (CVPR'2015) Kinetics-[400/600/700] (Homepage) (CVPR'2017)
SthV1 (Homepage) (ICCV'2017) SthV2 (Homepage) (ICCV'2017) Diving48 (Homepage) (ECCV'2018) Jester (Homepage) (ICCV'2019)
Moments in Time (Homepage) (TPAMI'2019) Multi-Moments in Time (Homepage) (ArXiv'2019) HVU (Homepage) (ECCV'2020) OmniSource (Homepage) (ECCV'2020)

Models

We present a major part of the model results, the configuration files, and downloading links in the following table. The FLOPs is computed by fvcore, where we omit the classification head since it has low impact to the FLOPs.

Dataset Version Pretrain GFLOPs Param (M) Top-1 Config Download
K400 Tiny IN-1K 240 21.8 79.5 link link
K400 Small IN-1K 636 48.9 80.6 link link
K400 Base IN-1K 1072 86.8 81.1 link link
K600 Base IN-22K 1072 86.8 85.2 link link
Diving-48 Small K400 1908 48.9 81.8 link link
HMDB-51 Small K400 1908 48.9 76.4 link link
UCF-101 Small K400 1908 48.9 97.5 link link

Visualization

We visualize the attention maps at the last layer of our model generated by Grad-CAM on Kinetics-400. As shown in the following three gifs, our model successfully learns to focus on the relevant parts in the video clip. Left: flying kites. Middle: counting money. Right: walking dogs.

You can use the following commend to visualize the attention weights:

python demo/demo_gradcam.py 
    
     
     
       --target-layer-name 
      
        --out-filename 
        
       
      
     
    
   

For example, to visualize the last layer of DualFormer-S on a K400 video (-cii-Z0dW2E_000020_000030.mp4), please run:

python demo/demo_gradcam.py \
    configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py \
    checkpoints/k400/dualformer_small_patch244_window877.pth \
    /dataset/kinetics-400/train_files/-cii-Z0dW2E_000020_000030.mp4 \
    --target-layer-name backbone/blocks/3/3 --fps 10 \
    --out-filename output/-cii-Z0dW2E_000020_000030.gif

User Guide

Folder Structure

As our implementation is based on mmaction2, we specify our contributions as follows:

Testing

# single-gpu testing
python tools/test.py 
    
    
      --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh 
      
       
       
         --eval top_k_accuracy 
       
      
     
    
   

Example 1: to validate a DualFormer-T model on Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py checkpoints/k400/dualformer_tiny_patch244_window877.pth 8 --eval top_k_accuracy

You will obtain the result as follows:

Example 2: to validate a DualFormer-S model on Diving-48 dataset with 4 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_small_patch244_window877_diving48.py checkpoints/diving48/dualformer_small_patch244_window877.pth 4 --eval top_k_accuracy 

The output will be as follows:

Training from scratch

To train a video recognition model from scratch for Kinetics-400, please run:

# single-gpu training
python tools/train.py 
   
     [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
     
     
       [other optional arguments]

     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 

Training a DualFormer-S model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py 8 

Training with pre-trained 2D models

To train a video recognition model with pre-trained image models, please run:

# single-gpu training
python tools/train.py 
   
     --cfg-options model.backbone.pretrained=
    
      [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
      
      
        --cfg-options model.backbone.pretrained=
       
         [model.backbone.use_checkpoint=True] [other optional arguments] 
       
      
     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Training a DualFormer-B model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_base_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Training with Token Labelling

We also present the first attempt to improve the video recognition model by generalizing Token Labelling to videos as additional augmentations, in which MixToken is turned off as it does not work on our video datasets. For instance, to train a small version of DualFormer using DualFormer-B as the annotation model on the fly, please run:

bash tools/dist_train.sh configs/recognition/dualformer/dualformer_tiny_tokenlabel_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained='checkpoints/pretrained_2d/dualformer_tiny.pth' --validate 

Notice that we place the checkpoint of the annotation model at 'checkpoints/k400/dualformer_base_patch244_window877.pth'. You can change it to anywhere you want, or modify the path variable in this file.

We present two examples of visualization of token labelling on video data. For simiplicity, we omit several frames and thus each example only shows 5 frames with uniform sampling rate. For each frame, each value p(i,j) on the left hand side means the pseudo label (index) at each patch of the last stage provided by the annotation model.

  • Visualization example 1 (Correct label: pushing cart, index: 262).
  • Visualization example 2 (Correct label: dribbling basketball, index: 99).

              

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liang2021dualformer,
         title={DualFormer: Local-Global Stratified Transformer for Efficient Video Recognition}, 
         author={Yuxuan Liang and Pan Zhou and Roger Zimmermann and Shuicheng Yan},
         year={2021},
         journal={arXiv preprint arXiv:2112.04674},
}

Acknowledgement

We would like to thank the authors of the following helpful codebases:

Please kindly consider star these related packages as well. Thank you much for your attention.

Owner
Sea AI Lab
Sea AI Lab
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022