Local-Global Stratified Transformer for Efficient Video Recognition

Overview

DualFormer

This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model is built on a popular video package called mmaction2. This repo also refers to the code templates provided by PVT, Twins and Swin. This repo is released under the Apache 2.0 license.

Introduction

DualFormer is a Transformer architecture that can effectively and efficiently perform space-time attention for video recognition. Specifically, our DualFormer stratifies the full space-time attention into dual cascaded levels, i.e., to first learn fine-grained local space-time interactions among nearby 3D tokens, followed by the capture of coarse-grained global dependencies between the query token and the coarse-grained global pyramid contexts. Experimental results show the superiority of DualFormer on five video benchmarks against existing methods. In particular, DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least 3.2× fewer than existing methods with similar performances.

Installation & Requirement

Please refer to install.md for installation. The docker files are also provided for convenient usage - cuda10.1 and cuda11.0.

All models are trained on 8 Nvidia A100 GPUs. For example, training a DualFormer-T on Kinetics-400 takes ∼31 hours on 8 A100 GPUs, while training a larger model DualFormer-B on Kinetics-400 requires ∼3 days on 8 A100 GPUs.

Data Preparation

Please first see data_preparation.md for a general knowledge of data preparation.

  • For Kinetics-400/600, as these are dynamic datasets (videos may be removed from YouTube), we employ this repo to download the original files and the annotatoins. Only a few number of corrupted videos are removed (around 50).
  • For other datasets, i.e., HMDB-51, UCF-101 and Diving-48, we use the data downloader provided by mmaction2 as aforementioned.

The full supported datasets are listed below (more details in supported_datasets.md):

HMDB51 (Homepage) (ICCV'2011) UCF101 (Homepage) (CRCV-IR-12-01) ActivityNet (Homepage) (CVPR'2015) Kinetics-[400/600/700] (Homepage) (CVPR'2017)
SthV1 (Homepage) (ICCV'2017) SthV2 (Homepage) (ICCV'2017) Diving48 (Homepage) (ECCV'2018) Jester (Homepage) (ICCV'2019)
Moments in Time (Homepage) (TPAMI'2019) Multi-Moments in Time (Homepage) (ArXiv'2019) HVU (Homepage) (ECCV'2020) OmniSource (Homepage) (ECCV'2020)

Models

We present a major part of the model results, the configuration files, and downloading links in the following table. The FLOPs is computed by fvcore, where we omit the classification head since it has low impact to the FLOPs.

Dataset Version Pretrain GFLOPs Param (M) Top-1 Config Download
K400 Tiny IN-1K 240 21.8 79.5 link link
K400 Small IN-1K 636 48.9 80.6 link link
K400 Base IN-1K 1072 86.8 81.1 link link
K600 Base IN-22K 1072 86.8 85.2 link link
Diving-48 Small K400 1908 48.9 81.8 link link
HMDB-51 Small K400 1908 48.9 76.4 link link
UCF-101 Small K400 1908 48.9 97.5 link link

Visualization

We visualize the attention maps at the last layer of our model generated by Grad-CAM on Kinetics-400. As shown in the following three gifs, our model successfully learns to focus on the relevant parts in the video clip. Left: flying kites. Middle: counting money. Right: walking dogs.

You can use the following commend to visualize the attention weights:

python demo/demo_gradcam.py 
    
     
     
       --target-layer-name 
      
        --out-filename 
        
       
      
     
    
   

For example, to visualize the last layer of DualFormer-S on a K400 video (-cii-Z0dW2E_000020_000030.mp4), please run:

python demo/demo_gradcam.py \
    configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py \
    checkpoints/k400/dualformer_small_patch244_window877.pth \
    /dataset/kinetics-400/train_files/-cii-Z0dW2E_000020_000030.mp4 \
    --target-layer-name backbone/blocks/3/3 --fps 10 \
    --out-filename output/-cii-Z0dW2E_000020_000030.gif

User Guide

Folder Structure

As our implementation is based on mmaction2, we specify our contributions as follows:

Testing

# single-gpu testing
python tools/test.py 
    
    
      --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh 
      
       
       
         --eval top_k_accuracy 
       
      
     
    
   

Example 1: to validate a DualFormer-T model on Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py checkpoints/k400/dualformer_tiny_patch244_window877.pth 8 --eval top_k_accuracy

You will obtain the result as follows:

Example 2: to validate a DualFormer-S model on Diving-48 dataset with 4 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_small_patch244_window877_diving48.py checkpoints/diving48/dualformer_small_patch244_window877.pth 4 --eval top_k_accuracy 

The output will be as follows:

Training from scratch

To train a video recognition model from scratch for Kinetics-400, please run:

# single-gpu training
python tools/train.py 
   
     [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
     
     
       [other optional arguments]

     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 

Training a DualFormer-S model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py 8 

Training with pre-trained 2D models

To train a video recognition model with pre-trained image models, please run:

# single-gpu training
python tools/train.py 
   
     --cfg-options model.backbone.pretrained=
    
      [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
      
      
        --cfg-options model.backbone.pretrained=
       
         [model.backbone.use_checkpoint=True] [other optional arguments] 
       
      
     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Training a DualFormer-B model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_base_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Training with Token Labelling

We also present the first attempt to improve the video recognition model by generalizing Token Labelling to videos as additional augmentations, in which MixToken is turned off as it does not work on our video datasets. For instance, to train a small version of DualFormer using DualFormer-B as the annotation model on the fly, please run:

bash tools/dist_train.sh configs/recognition/dualformer/dualformer_tiny_tokenlabel_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained='checkpoints/pretrained_2d/dualformer_tiny.pth' --validate 

Notice that we place the checkpoint of the annotation model at 'checkpoints/k400/dualformer_base_patch244_window877.pth'. You can change it to anywhere you want, or modify the path variable in this file.

We present two examples of visualization of token labelling on video data. For simiplicity, we omit several frames and thus each example only shows 5 frames with uniform sampling rate. For each frame, each value p(i,j) on the left hand side means the pseudo label (index) at each patch of the last stage provided by the annotation model.

  • Visualization example 1 (Correct label: pushing cart, index: 262).
  • Visualization example 2 (Correct label: dribbling basketball, index: 99).

              

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liang2021dualformer,
         title={DualFormer: Local-Global Stratified Transformer for Efficient Video Recognition}, 
         author={Yuxuan Liang and Pan Zhou and Roger Zimmermann and Shuicheng Yan},
         year={2021},
         journal={arXiv preprint arXiv:2112.04674},
}

Acknowledgement

We would like to thank the authors of the following helpful codebases:

Please kindly consider star these related packages as well. Thank you much for your attention.

Owner
Sea AI Lab
Sea AI Lab
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023