This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

Overview

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv]

Overview

ActionCLIP

Content

Prerequisites

The code is built with following libraries:

  • PyTorch >= 1.8
  • wandb
  • RandAugment
  • pprint
  • tqdm
  • dotmap
  • yaml
  • csv

For video data pre-processing, you may need ffmpeg.

More detail information about libraries see INSTALL.md.

Data Preparation

We need to first extract videos into frames for fast reading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Kinetics, UCF101, HMDB51, Charades.

Updates

  • We now support single crop validation(including zero-shot) on Kinetics-400, UCF101 and HMDB51. The pretrained models see MODEL_ZOO.md for more information.
  • we now support the model-training on Kinetics-400, UCF101 and HMDB51 on 8, 16 and 32 frames. The model-training configs see configs/README.md for more information.
  • We now support the model-training on your own datasets. The detail information see configs/README.md.

Pretrained Models

Training video models is computationally expensive. Here we provide some of the pretrained models. We provide a large set of trained models in the ActionCLIP MODEL_ZOO.md.

Kinetics-400

We experiment ActionCLIP with different backbones(we choose Transf as our final visual prompt since it obtains the best results) and input frames configurations on k400. Here is a list of pre-trained models that we provide (see Table 6 of the paper).

model n-frame top1 Acc(single-crop) top5 Acc(single-crop) checkpoint
ViT-B/32 8 78.36% 94.25% link pwd:8hg2
ViT-B/16 8 81.09% 95.49% link
ViT-B/16 16 81.68% 95.87% link
ViT-B/16 32 82.32% 96.20% link pwd:v7nn

HMDB51 && UCF101

On HMDB51 and UCF101 datasets, the accuracy(k400 pretrained) is reported under the accurate setting.

HMDB51

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 76.2% link

UCF101

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 97.1% link

Testing

To test the downloaded pretrained models on Kinetics or HMDB51 or UCF101, you can run scripts/run_test.sh. For example:

# test
bash scripts/run_test.sh  ./configs/k400/k400_ft_tem.yaml

Zero-shot

We provide several examples to do zero-shot validation on kinetics-400, UCF101 and HMDB51.

  • To do zero-shot validation on Kinetics from CLIP pretrained models, you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/k400/k400_ft_zero_shot.yaml
  • To do zero-shot validation on UCF101 and HMDB51 from Kinetics pretrained models, you need first prepare the k400 pretrained model and then you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/hmdb51/hmdb_ft_zero_shot.yaml

Training

We provided several examples to train ActionCLIP with this repo:

  • To train on Kinetics from CLIP pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/k400/k400_ft_tem_test.yaml
  • To train on HMDB51 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/hmdb51/hmdb_ft.yaml
  • To train on UCF101 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/ucf101/ucf_ft.yaml

More training details, you can find in configs/README.md

Contributors

ActionCLIP is written and maintained by Mengmeng Wang and Jiazheng Xing.

Citing ActionCLIP

If you find ActionClip useful in your research, please use the following BibTex entry for citation.

@inproceedings{wang2022ActionCLIP,
  title={ActionCLIP: A New Paradigm for Video Action Recognition},
  author={Mengmeng Wang, Jiazheng Xing and Yong Liu},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
} 

Acknowledgments

Our code is based on CLIP and STM.

A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022