This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

Overview

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv]

Overview

ActionCLIP

Content

Prerequisites

The code is built with following libraries:

  • PyTorch >= 1.8
  • wandb
  • RandAugment
  • pprint
  • tqdm
  • dotmap
  • yaml
  • csv

For video data pre-processing, you may need ffmpeg.

More detail information about libraries see INSTALL.md.

Data Preparation

We need to first extract videos into frames for fast reading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Kinetics, UCF101, HMDB51, Charades.

Updates

  • We now support single crop validation(including zero-shot) on Kinetics-400, UCF101 and HMDB51. The pretrained models see MODEL_ZOO.md for more information.
  • we now support the model-training on Kinetics-400, UCF101 and HMDB51 on 8, 16 and 32 frames. The model-training configs see configs/README.md for more information.
  • We now support the model-training on your own datasets. The detail information see configs/README.md.

Pretrained Models

Training video models is computationally expensive. Here we provide some of the pretrained models. We provide a large set of trained models in the ActionCLIP MODEL_ZOO.md.

Kinetics-400

We experiment ActionCLIP with different backbones(we choose Transf as our final visual prompt since it obtains the best results) and input frames configurations on k400. Here is a list of pre-trained models that we provide (see Table 6 of the paper).

model n-frame top1 Acc(single-crop) top5 Acc(single-crop) checkpoint
ViT-B/32 8 78.36% 94.25% link pwd:8hg2
ViT-B/16 8 81.09% 95.49% link
ViT-B/16 16 81.68% 95.87% link
ViT-B/16 32 82.32% 96.20% link pwd:v7nn

HMDB51 && UCF101

On HMDB51 and UCF101 datasets, the accuracy(k400 pretrained) is reported under the accurate setting.

HMDB51

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 76.2% link

UCF101

model n-frame top1 Acc(single-crop) checkpoint
ViT-B/16 32 97.1% link

Testing

To test the downloaded pretrained models on Kinetics or HMDB51 or UCF101, you can run scripts/run_test.sh. For example:

# test
bash scripts/run_test.sh  ./configs/k400/k400_ft_tem.yaml

Zero-shot

We provide several examples to do zero-shot validation on kinetics-400, UCF101 and HMDB51.

  • To do zero-shot validation on Kinetics from CLIP pretrained models, you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/k400/k400_ft_zero_shot.yaml
  • To do zero-shot validation on UCF101 and HMDB51 from Kinetics pretrained models, you need first prepare the k400 pretrained model and then you can run:
# zero-shot
bash scripts/run_test.sh  ./configs/hmdb51/hmdb_ft_zero_shot.yaml

Training

We provided several examples to train ActionCLIP with this repo:

  • To train on Kinetics from CLIP pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/k400/k400_ft_tem_test.yaml
  • To train on HMDB51 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/hmdb51/hmdb_ft.yaml
  • To train on UCF101 from Kinetics400 pretrained models, you can run:
# train 
bash scripts/run_train.sh  ./configs/ucf101/ucf_ft.yaml

More training details, you can find in configs/README.md

Contributors

ActionCLIP is written and maintained by Mengmeng Wang and Jiazheng Xing.

Citing ActionCLIP

If you find ActionClip useful in your research, please use the following BibTex entry for citation.

@inproceedings{wang2022ActionCLIP,
  title={ActionCLIP: A New Paradigm for Video Action Recognition},
  author={Mengmeng Wang, Jiazheng Xing and Yong Liu},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
} 

Acknowledgments

Our code is based on CLIP and STM.

Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022