NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Overview

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

This repository provides our implementation of the CVPR 2021 paper NeuroMorph. Our algorithm produces in one go, i.e., in a single feed forward pass, a smooth interpolation and point-to-point correspondences between two input 3D shapes. It is learned in a self-supervised manner from an unlabelled collection of deformable and heterogeneous shapes.

If you use our work, please cite:

@inproceedings{eisenberger2021neuromorph, 
  title={NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go}, 
  author={Eisenberger, Marvin and Novotny, David and Kerchenbaum, Gael and Labatut, Patrick and Neverova, Natalia and Cremers, Daniel and Vedaldi, Andrea}, 
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 
  pages={7473--7483}, 
  year={2021}
}

Requirements

The code was tested on Python 3.8.10 with the PyTorch version 1.9.1 and CUDA 10.2. The code also requires the pytorch-geometric library (installation instructions) and matplotlib. Finally, MATLAB with the Statistics and Machine Learning Toolbox is used to pre-process ceratin datasets (we tested MATLAB versions 2019b and 2021b). The code should run on Linux, macOS and Windows.

Installing NeuroMorph

Using Anaconda, you can install the required dependencies as follows:

conda create -n neuromorph python=3.8
conda activate neuromorph
conda install pytorch cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install pyg -c pyg -c conda-forge

Running NeuroMorph

In order to run NeuroMorph:

  • Specify the location of datasets on your device under data_folder_ in param.py.
  • To use your own data, create a new dataset in data/data.py.
  • To train FAUST remeshed, run the main script main_train.py. Modify the script as needed to train on different data.

For a more detailed tutorial, see the next section.

Reproducing the experiments

We show below how to reproduce the experiments on the FAUST remeshed data.

Data download

You can download experimental mesh data from here from the authors of the Deep Geometric Functional Maps. Download the FAUST_r.zip file from this site, unzip it, and move the content of the directory to /data/mesh/FAUST_r .

Data preprocessing

Meshes must be subsampled and remeshed (for data augmentation during training) and geodesic distance matrices must be computed before the learning code runs. For this, we use the data_preprocessing/preprocess_dataset.m MATLAB scripts (we tested V2019b and V2021b).

Start MATLAB and do the following:

cd 
   
    /data_preprocessing
   
preprocess_dataset("../data/meshes/FAUST_r/", ".off")

The result should be a list of MATLAB mesh files in a mat subfolder (e.g., data/meshes/FAUST_r/mat ), plus additional data.

Model training

If you stored the data in the directory given above, you can train the model by running:

mkdir -p data/{checkpoint,out}
python main_train.py

The trained models will be saved in a series of checkpoints at /data/out/ . Otherwise, edit param.py to change the paths.

Model testing

Upon completion, evaluate the trained model with main_test.py . Specify the checkpoint folder name by running:

python main_test.py <TIME_STAMP_FAUST>

Here is any of the directories saved in /data/out/ . This automatically saves correspondences and interpolations on the FAUST remeshed test set to /data/out/ . For reference, on FAUST you should expect a validation error around 0.25 after 400 epochs.

Contributing

See the CONTRIBUTING file for how to help out.

License

NeuroMorph is MIT licensed, as described in the LICENSE file. NeuroMorph includes a few files from other open source projects, as further detailed in the same LICENSE file.

Owner
Meta Research
Meta Research
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022