Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

Overview

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

This is the official PyTorch implementation for the following EMNLP 2021 paper from Salesforce Research:

Title: CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

Authors: Yue Wang, Weishi Wang , Shafiq Joty, and Steven C.H. Hoi

CodeT5 demo

Updates

Oct 29, 2021

We release fine-tuned checkpoints for all the downstream tasks covered in the paper.

Oct 25, 2021

We release a CodeT5-base fine-tuned checkpoint (Salesforce/codet5-base-multi-sum) for multilingual code summarzation. Below is how to use this model:

from transformers import RobertaTokenizer, T5ForConditionalGeneration

if __name__ == '__main__':
    tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
    model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base-multi-sum')

    text = """def svg_to_image(string, size=None):
    if isinstance(string, unicode):
        string = string.encode('utf-8')
        renderer = QtSvg.QSvgRenderer(QtCore.QByteArray(string))
    if not renderer.isValid():
        raise ValueError('Invalid SVG data.')
    if size is None:
        size = renderer.defaultSize()
        image = QtGui.QImage(size, QtGui.QImage.Format_ARGB32)
        painter = QtGui.QPainter(image)
        renderer.render(painter)
    return image"""

    input_ids = tokenizer(text, return_tensors="pt").input_ids

    generated_ids = model.generate(input_ids, max_length=20)
    print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
    # this prints: "Convert a SVG string to a QImage."

Oct 18, 2021

We add a model card for CodeT5! Please reach out if you have any questions about it.

Sep 24, 2021

CodeT5 is now in hugginface!

You can simply load the model (CodeT5-small and CodeT5-base) and do the inference:

from transformers import RobertaTokenizer, T5ForConditionalGeneration

tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base')

text = "def greet(user): print(f'hello <extra_id_0>!')"
input_ids = tokenizer(text, return_tensors="pt").input_ids

# simply generate one code span
generated_ids = model.generate(input_ids, max_length=8)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
# this prints "{user.username}"

Introduction

This repo provides the code for reproducing the experiments in CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation . CodeT5 is a new pre-trained encoder-decoder model for programming languages, which is pre-trained on 8.35M functions in 8 programming languages (Python, Java, JavaScript, PHP, Ruby, Go, C, and C#). In total, it achieves state-of-the-art results on 14 sub-tasks in a code intelligence benchmark - CodeXGLUE.

Paper link: https://arxiv.org/abs/2109.00859

Blog link: https://blog.einstein.ai/codet5/

The code currently includes two pre-trained checkpoints (CodeT5-small and CodeT5-base) and scripts to fine-tine them on 4 generation tasks ( code summarization, code generation, translation, and refinement) plus 2 understanding tasks (code defect detection and clone detection) in CodeXGLUE. We also provide their fine-tuned checkpoints to facilitate the easy replication of our paper.

In practice, CodeT5 can be deployed as an AI-powered coding assistant to boost the productivity of software developers. At Salesforce, we build an AI coding assistant demo using CodeT5 as a VS Code plugin to provide three capabilities for Apex developers:

  • Text-to-code generation: generate code based on the natural language description.
  • Code autocompletion: complete the whole function of code given the target function name.
  • Code summarization: generate the summary of a function in natural language description.

Table of Contents

  1. Citation
  2. License
  3. Dependency
  4. Download
  5. Fine-tuning
  6. Get Involved

Citation

If you find this code to be useful for your research, please consider citing.

@inproceedings{
    wang2021codet5,
    title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, 
    author={Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi},
    booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021},
    year={2021},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from:

violence, hate, and division,

environmental destruction,

abuse of human rights, or

the destruction of people's physical and mental health.

We encourage users of this software to tell us about the applications in which they are putting it to use by emailing [email protected], and to use appropriate documentation when developing high-stakes applications of this model.

Dependency

  • Pytorch 1.7.1
  • tensorboard 2.4.1
  • transformers 4.6.1
  • tree-sitter 0.2.2

Download

Instructions to download:

# pip install gsutil
cd your-cloned-codet5-path

gsutil -m cp -r "gs://sfr-codet5-data-research/pretrained_models" .
gsutil -m cp -r "gs://sfr-codet5-data-research/data" .
gsutil -m cp -r "gs://sfr-codet5-data-research/finetuned_models" .

Fine-tuning

Go to sh folder, set the WORKDIR in exp_with_args.sh to be your cloned CodeT5 repository path.

You can use run_exp.py to run a broad set of experiments by simply passing the model_tag, task, and sub_task arguments. In total, we support five models (i.e., ['roberta', 'codebert', 'bart_base', 'codet5_small', 'codet5_base']) and six tasks (i.e., ['summarize', 'concode', 'translate', 'refine', 'defect', 'clone']). For each task, we use the sub_task to specify which specific datasets to fine-tine on. Below is the full list:

--task --sub_task Description
summarize ruby/javascript/go/python/java/php code summarization task on CodeSearchNet data with six PLs
concode none text-to-code generation on Concode data
translate java-cs/cs-java code-to-code translation between Java and C#
refine small/medium code refinement on code repair data with small/medium functions
defect none code defect detection in C/C++ data
clone none code clone detection in Java data

For example, if you want to run CodeT5-base model on the code summarization task for Python, you can simply run:

python run_exp.py --model_tag codet5_base --task summarize --sub_task python

Besides, you can specify:

model_dir: where to save fine-tuning checkpoints
res_dir: where to save the performance results 
summary_dir: where to save the training curves
data_num: how many data instances to use, the default -1 is for using the full data
gpu: the index of the GPU to use in the cluster

You can also revise the suggested arguments here or directly customize the exp_with_args.sh bash file. Please refer to the argument flags in configs.py for the full available options. The saved training curves in summary_dir can be visualized using tensorboard. Note that we employ one A100 GPU for all fine-tuning experiments.

How to fine-tune on your own task and dataset?

If you want to fine-tune on your dataset, you can add your own task and sub_task in configs.py (here) and add your data path and the function to read in utils.py (here and here). The read function can be implemented in _utils.py similar to this one. If your task to add is a generation task, you can simply reuse or customize the run_gen.py. For understanding tasks, please refer to run_defect.py and run_clone.py.

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022