Knowledge Management for Humans using Machine Learning & Tags

Overview

HyperTag

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your text documents (yes, even PDF's) and images. Instead of introducing proprietary file formats like other existing file organization tools, HyperTag just smoothly layers on top of your existing files without any fuss.

Objective Function: Minimize time between a thought and access to all relevant files.

Accompanying blog post: https://blog.neotree.uber.space/posts/hypertag-file-organization-made-for-humans

Table of Contents

Install

Available on PyPI

$ pip install hypertag (supports both CPU only & CUDA accelerated execution!)

Community

Join the HyperTag matrix chat room to stay up to date on the latest developments or to ask for help.

Overview

HyperTag offers a slick CLI but more importantly it creates a directory called HyperTagFS which is a file system based representation of your files and tags using symbolic links and directories.

Directory Import: Import your existing directory hierarchies using $ hypertag import path/to/directory. HyperTag converts it automatically into a tag hierarchy using metatagging.

Semantic Text & Image Search (Experimental): Search for images (jpg, png) and text documents (yes, even PDF's) content with a simple text query. Text search is powered by the awesome Sentence Transformers library. Text to image search is powered by OpenAI's CLIP model. Currently only English queries are supported.

HyperTag Daemon (Experimental): Monitors HyperTagFS and directories added to the auto import list for user changes (see section "Start HyperTag Daemon" below). Also spawns the DaemonService which speeds up semantic search significantly (warning: daemon process is a RAM hog with ~2GB usage).

Fuzzy Matching Queries: HyperTag uses fuzzy matching to minimize friction in the unlikely case of a typo.

File Type Groups: HyperTag automatically creates folders containing common files (e.g. Images: jpg, png, etc., Documents: txt, pdf, etc., Source Code: py, js, etc.), which can be found in HyperTagFS.

HyperTag Graph: Quickly get an overview of your HyperTag Graph! HyperTag visualizes the metatag graph on every change and saves it at HyperTagFS/hypertag-graph.pdf.

HyperTag Graph Example

CLI Functions

Import existing directory recursively

Import files with tags inferred from the existing directory hierarchy.

$ hypertag import path/to/directory

Add file/s or URL/s manually

$ hypertag add path/to/file https://github.com/SeanPedersen/HyperTag

Tag file/s (with values)

Manually tag files. Shortcut: $ hypertag t

$ hypertag tag humans/*.txt with human "Homo Sapiens"

Add a value to a file's tag:

$ hypertag tag sean.txt with name="Sean Pedersen"

Untag file/s

Manually remove tag/s from file/s.

$ hypertag untag humans/*.txt with human "Homo Sapiens"

Tag a tag

Metatag tag/s to create tag hierarchies. Shortcut: $ hypertag tt

$ hypertag metatag human with animal

Merge tags

Merge all associations (files & tags) of tag A into tag B.

$ hypertag merge human into "Homo Sapiens"

Query using Set Theory

Print file names of the resulting set matching the query. Queries are composed of tags (with values) and operands. Tags are fuzzy matched for convenience. Nesting is currently not supported, queries are evaluated from left to right.
Shortcut: $ hypertag q

Query with a value using a wildcard: $ hypertag query name="Sean*"
Print paths: $ hypertag query human --path
Print fuzzy matched tag: $ hypertag query man --verbose
Disable fuzzy matching: $ hypertag query human --fuzzy=0

Default operand is AND (intersection):
$ hypertag query human name="Sean*" is equivalent to $ hypertag query human and name="Sean*"

OR (union):
$ hypertag query human or "Homo Sapiens"

MINUS (difference):
$ hypertag query human minus "Homo Sapiens"

Index supported image and text files

Only indexed files can be searched.

$ hypertag index

To parse even unparseable PDF's, install tesseract: # pacman -S tesseract tesseract-data-eng

Index only image files: $ hypertag index --image
Index only text files: $ hypertag index --text

Semantic search for text files

A custom search algorithm combining semantic with token matching search. Print text file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag s

$ hypertag search "your important text query" --path --score --top_k=10

Semantic search for image files

Print image file names sorted by matching score. Performance benefits greatly from running the HyperTag daemon.
Shortcut: $ hypertag si

Text to image: $ hypertag search_image "your image content description" --path --score --top_k=10

Image to image: $ hypertag search_image "path/to/image.jpg" --path --score --top_k=10

Start HyperTag Daemon

Start daemon process with triple functionality:

  • Watches HyperTagFS directory for user changes
    • Maps file (symlink) and directory deletions into tag / metatag removal/s
    • On directory creation: Interprets name as set theory tag query and automatically populates it with results
    • On directory creation in Search Images or Search Texts: Interprets name as semantic search query (add top_k=42 to limit result size) and automatically populates it with results
  • Watches directories on the auto import list for user changes:
    • Maps file changes (moves & renames) to DB
    • On file creation: Adds new file/s with inferred tag/s and auto-indexes it (if supported file format).
  • Spawns DaemonService to load and expose models used for semantic search, speeding it up significantly

$ hypertag daemon

Print all tags of file/s

$ hypertag tags filename1 filename2

Print all metatags of tag/s

$ hypertag metatags tag1 tag2

Print all tags

$ hypertag show

Print all files

Print names: $ hypertag show files

Print paths: $ hypertag show files --path

Visualize HyperTag Graph

Visualize the metatag graph hierarchy (saved at HyperTagFS root).

$ hypertag graph

Specify layout algorithm (default: fruchterman_reingold):

$ hypertag graph --layout=kamada_kawai

Generate HyperTagFS

Generate file system based representation of your files and tags using symbolic links and directories.

$ hypertag mount

Add directory to auto import list

Directories added to the auto import list will be monitored by the daemon for new files or changes.

$ hypertag add_auto_import_dir path/to/directory

Set HyperTagFS directory path

Default is the user's home directory.

$ hypertag set_hypertagfs_dir path/to/directory

Architecture

  • Python and it's vibrant open-source community power HyperTag
  • Many other awesome open-source projects make HyperTag possible (listed in pyproject.toml)
  • SQLite3 serves as the meta data storage engine (located at ~/.config/hypertag/hypertag.db)
  • Added URLs are saved in ~/.config/hypertag/web_pages for websites, others in ~/.config/hypertag/downloads
  • Symbolic links are used to create the HyperTagFS directory structure
  • Semantic Search: boosted using hnswlib
    • Text to text search is powered by the awesome DistilBERT
    • Text to image & image to image search is powered by OpenAI's impressive CLIP model

Development

  • Find prioritized issues here: TODO List
  • Pick an issue and comment how you plan to tackle it before starting out, to make sure no dev time is wasted.
  • Clone repo: $ git clone https://github.com/SeanPedersen/HyperTag.git
  • $ cd HyperTag/
  • Install Poetry
  • Install dependencies: $ poetry install
  • Activate virtual environment: $ poetry shell
  • Run all tests: $ pytest -v
  • Run formatter: $ black hypertag/
  • Run linter: $ flake8
  • Run type checking: $ mypy **/*.py
  • Run security checking: $ bandit --exclude tests/ -r .
  • Codacy: Dashboard
  • Run HyperTag: $ python -m hypertag

Inspiration

What is the point of HyperTag's existence?
HyperTag offers many unique features such as the import, semantic search, graphing and fuzzy matching functions that make it very convenient to use. All while HyperTag's code base staying relatively tiny at <2000 LOC compared to similar projects like TMSU (>10,000 LOC in Go) and SuperTag (>25,000 LOC in Rust), making it easy to hack on.

Owner
Ravn Tech, Inc.
Rapidly Emerging & Adapting Flock
Ravn Tech, Inc.
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022