Generate text line images for training deep learning OCR model (e.g. CRNN)

Overview

Text Renderer

Generate text line images for training deep learning OCR model (e.g. CRNN). example

  • Modular design. You can easily add different components: Corpus, Effect, Layout.
  • Integrate with imgaug, see imgaug_example for usage.
  • Support render multi corpus on image with different effects. Layout is responsible for the layout between multiple corpora
  • Support apply effects on different stages of rendering process corpus_effects, layout_effects, render_effects.
  • Generate vertical text.
  • Support generate lmdb dataset which compatible with PaddleOCR, see Dataset
  • A web font viewer.
  • Corpus sampler: helpful to perform character balance

Documentation

Run Example

Run following command to generate images using example data:

git clone https://github.com/oh-my-ocr/text_renderer
cd text_renderer
python3 setup.py develop
pip3 install -r docker/requirements.txt
python3 main.py \
    --config example_data/example.py \
    --dataset img \
    --num_processes 2 \
    --log_period 10

The data is generated in the example_data/output directory. A labels.json file contains all annotations in follow format:

{
  "labels": {
    "000000000": "test",
    "000000001": "text2"
  },
  "sizes": {
    "000000000": [
      120,
      32 
    ],
    "000000001": [
      128,
      32 
    ]
  },
  "num-samples": 2
}

You can also use --dataset lmdb to store image in lmdb file, lmdb file contains follow keys:

  • num-samples
  • image-000000000
  • label-000000000
  • size-000000000

You can check config file example_data/example.py to learn how to use text_renderer, or follow the Quick Start to learn how to setup configuration

Quick Start

Prepare file resources

  • Font files: .ttf.otf.ttc
  • Background images of any size, either from your business scenario or from publicly available datasets (COCO, VOC)
  • Corpus: text_renderer offers a wide variety of text sampling methods, to use these methods, you need to consider the preparation of the corpus from two perspectives:
  1. The corpus must be in the target language for which you want to perform OCR recognition
  2. The corpus should meets your actual business needs, such as education field, medical field, etc.
  • Charset file [Optional but recommend]: OCR models in real-world scenarios (e.g. CRNN) usually support only a limited character set, so it's better to filter out characters outside the character set during data generation. You can do this by setting the chars_file parameter

You can download pre-prepared file resources for this Quick Start from here:

Save these resource files in the same directory:

workspace
├── bg
│ └── background.png
├── corpus
│ └── eng_text.txt
└── font
    └── simsun.ttf

Create config file

Create a config.py file in workspace directory. One configuration file must have a configs variable, it's a list of GeneratorCfg.

The complete configuration file is as follows:

import os
from pathlib import Path

from text_renderer.effect import *
from text_renderer.corpus import *
from text_renderer.config import (
    RenderCfg,
    NormPerspectiveTransformCfg,
    GeneratorCfg,
    SimpleTextColorCfg,
)

CURRENT_DIR = Path(os.path.abspath(os.path.dirname(__file__)))


def story_data():
    return GeneratorCfg(
        num_image=10,
        save_dir=CURRENT_DIR / "output",
        render_cfg=RenderCfg(
            bg_dir=CURRENT_DIR / "bg",
            height=32,
            perspective_transform=NormPerspectiveTransformCfg(20, 20, 1.5),
            corpus=WordCorpus(
                WordCorpusCfg(
                    text_paths=[CURRENT_DIR / "corpus" / "eng_text.txt"],
                    font_dir=CURRENT_DIR / "font",
                    font_size=(20, 30),
                    num_word=(2, 3),
                ),
            ),
            corpus_effects=Effects(Line(0.9, thickness=(2, 5))),
            gray=False,
            text_color_cfg=SimpleTextColorCfg(),
        ),
    )


configs = [story_data()]

In the above configuration we have done the following things:

  1. Specify the location of the resource file
  2. Specified text sampling method: 2 or 3 words are randomly selected from the corpus
  3. Configured some effects for generation
  4. Specifies font-related parameters: font_size, font_dir

Run

Run main.py, it only has 4 arguments:

  • config:Python config file path
  • dataset: Dataset format img or lmdb
  • num_processes: Number of processes used
  • log_period: Period of log printing. (0, 100)

All Effect/Layout Examples

Find all effect/layout config example at link

  • bg_and_text_mask: Three images of the same width are merged together horizontally, it can be used to train GAN model like EraseNet
Name Example
0 bg_and_text_mask bg_and_text_mask.jpg
1 char_spacing_compact char_spacing_compact.jpg
2 char_spacing_large char_spacing_large.jpg
3 color_image color_image.jpg
4 curve curve.jpg
5 dropout_horizontal dropout_horizontal.jpg
6 dropout_rand dropout_rand.jpg
7 dropout_vertical dropout_vertical.jpg
8 emboss emboss.jpg
9 extra_text_line_layout extra_text_line_layout.jpg
10 line_bottom line_bottom.jpg
11 line_bottom_left line_bottom_left.jpg
12 line_bottom_right line_bottom_right.jpg
13 line_horizontal_middle line_horizontal_middle.jpg
14 line_left line_left.jpg
15 line_right line_right.jpg
16 line_top line_top.jpg
17 line_top_left line_top_left.jpg
18 line_top_right line_top_right.jpg
19 line_vertical_middle line_vertical_middle.jpg
20 padding padding.jpg
21 perspective_transform perspective_transform.jpg
22 same_line_layout_different_font_size same_line_layout_different_font_size.jpg
23 vertical_text vertical_text.jpg

Contribution

  • Corpus: Feel free to contribute more corpus generators to the project, It does not necessarily need to be a generic corpus generator, but can also be a business-specific generator, such as generating ID numbers

Run in Docker

Build image

docker build -f docker/Dockerfile -t text_renderer .

Config file is provided by CONFIG environment. In example.py file, data is generated in example_data/output directory, so we map this directory to the host.

docker run --rm \
-v `pwd`/example_data/docker_output/:/app/example_data/output \
--env CONFIG=/app/example_data/example.py \
--env DATASET=img \
--env NUM_PROCESSES=2 \
--env LOG_PERIOD=10 \
text_renderer

Font Viewer

Start font viewer

streamlit run tools/font_viewer.py -- web /path/to/fonts_dir

image

Build docs

cd docs
make html
open _build/html/index.html

Citing text_renderer

If you use text_renderer in your research, please consider use the following BibTeX entry.

@misc{text_renderer,
  author =       {oh-my-ocr},
  title =        {text_renderer},
  howpublished = {\url{https://github.com/oh-my-ocr/text_renderer}},
  year =         {2021}
}
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023