A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

Related tags

Deep Learningomni
Overview

OMNI

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

omni

Why?

When I finished my Kubernetes cluster using a few Raspberry Pis, the first thing I wanted to do is install Prometheus + Grafana for monitoring, and so I did. But when I had all of it working I found a few drawbacks:

  • The Prometheus exporter pods use a lot of RAM
  • The Prometheus exporter pods use a considerable amount of CPU
  • Prometheus gathers way too much data that I don't really need.
  • The node where the main Prometheus pod is installed gets all of the information and saves it in its own database, constantly performing a lot of writes to the SD card. SD cards under lots of constant writing operations tend to die.

Last but not least, I like to learn how these things work.

Advantages

Omni has (what I consider) some advantages over the regular Prometheus + Grafana combo:

  • It uses almost no RAM (13 Mb)
  • It uses almost no CPU
  • It gathers only the information I need
  • All of the information is sent to an InfluxDB instance that could be outside of the cluster. This means that no information is persisted in the Pis, extending their SD card's lifetime.
  • InfluxDB acts as the database and the graph dashboard at the same time, so there is no need to also install Grafana (although you could if you wanted to).

Prerequisites

For Omni to work, you'll need to have a couple of things running first.

InfluxDB

It's a time series database (just like Prometheus) that has nice charts and UI overall.

One of the goals of this project is to avoid constant writing to the SD cards, so you have a few options for the placement of the database:

  1. Use InfluxDB's online service (there is even a free tier https://www.influxdata.com/influxdb-pricing/)
  2. Run an InfluxDB instance in a server outside the Pi cluster (this what I'm doing right now)
  3. If you have better storage in your cluster (like M.2, SSD, etc.) and don't have the SD card limitation, run InfluxDB in the same cluster.

Libraries

You'll need to have the libseccomp2.deb library installed in each of your nodes to avoid a Python error:

Fatal Python Error: pyinit_main: can't initialize time

(more info here)

To install it you can do it in two ways (only one is needed):

  • Ansible: all nodes at the same time

    Edit the file ansible-playbook-libs.yaml in this repo, add your hosts and run:

    ansible-playbook install-libs.yaml
  • SSH: one by one

    Connect into each of your nodes and run:

    wget http://ftp.us.debian.org/debian/pool/main/libs/libseccomp/libseccomp2_2.5.1-1_armhf.deb
    sudo dpkg -i libseccomp2_2.5.1-1_armhf.deb

Once you have it, everything should work ok.

Installation

Before deploying Omni you'll have to specify the attributes of your InfluxDB instance.

  1. Open omni-install.yaml and fill the variables with your InfluxDB instance information.

    NOTE: The attribute OMNI_DATA_RATE_SECONDS specifies the number of seconds between data reporting events that are sent to the InfluxDB server.

  2. Check that everything is running as expected:

kubectl get all -n omni-system

And you are done! 🎉

Contributions

Pull requests with improvements and new features are more than welcome.

Owner
Matias Godoy
Jack of all trades, master of none
Matias Godoy
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Atif Hassan 103 Dec 14, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022