Parameterising Simulated Annealing for the Travelling Salesman Problem

Overview

Parameterising Simulated Annealing for the Travelling Salesman Problem

animated

Abstract

The Travelling Salesman Problem is a well known NP-Hard problem. Given a list of cities, find the shortest path that visits all cities once.

Simulated annealing is a well known stochastic method for solving optimisation problems and is a well known non-exact algorithm for solving the TSP. However, it's effectiveness is dependent on initial parameters such as the starting temperature and cooling rate which is often chosen empirically.

The goal of this project is to:

  • Determine if the optimal starting temperature and cooling rate can be parameterised off the input
  • Visualise the solving process of the TSP

Usage

Running the code

Examples of common commands to run the files are shown below. However, both src/main.py and src/benchmark.py have a --help that explains the optional flags.

# To visualise annealing on a problem set from the input file
python3 -m src.main -f <input_file>

# To visualise TSP on a random graph with 
   
     number of cities
   
python3 -m src.main -c <city_count>

# Benchmark the parameters using all problems in the data folder
python3 -m src.benchmark

Keyboard Controls

There are also ways to control the visualisation through key presses while it plays.

Key Action
Space Bar Pauses or unpauses the solver
Left / Right arrow Control how frequently the frame is redrawn
c Toggles showing the cities as nodes (this is off by default as it causes lag)

Creating your own model

If you would like to create your own instance of the TSP problem and visualise it:

  1. Create a new file
  2. Within this file ensure you have the line NODE_COORD_SECTION, and below that EOF.
  3. Between those two lines, you can place the coordinates of the cities, i.e. for the nth city, have a line like , where x and y are the x and y coordinates of the city.
  4. Run python3 -m src.main -f , where is the path to the file you have just made.

Files

File / Folder Purpose
data This contains TSP problems in .tsp files and their optimal solution in .opt.tour files, taken from TSPLIB
report The report detailing the Simulated Annealing and the experimentation
results The output directory containing results of the tests
src/benchmark.py Code for benchmarking different temperatures and cooling rates using the problems in the data folder
src/main.py Driver code to start the visualisation
src/setup.py Code for loading in city coordinates from a file, or generating random ones
src/solvers.py Module containing the python implementations of TSP solving algorithms

FAQ

What do you use to generate the graphics?

This project uses the p5py library for visualisation. Unfortunately, (to of my knowledge) this may not work with WSL.

What are the results of your research?

Idk. Still working on it.

What can I do to contribute?

Pog.

This is more of a "what I would I do if I have more time" but whatever, let's say you actually are interested. Disclaimer - the code isn't particularly polished (from me pivoting project ideas multiple times).

  • If you're up for a challenge, it would be interesting to implement LKH (Lin-Kernighan heuristic) efficiently
  • Implement other algorithms - they just need to extend the Solver abstract class to work with the frontend
  • Add a whatever city you want and it's coordinates to data/world.tsp!
Owner
Gary Sun
hi
Gary Sun
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022