The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Related tags

Deep Learningeirli
Overview

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Documentation status Dataset download link

Over the past handful of years, representation learning has exploded as a subfield, and, with it have come a plethora of new methods, each slightly different from the other.

Our Empirical Investigation of Representation Learning for Imitation (EIRLI) has two main goals:

  1. To create a modular algorithm definition system that allows researchers to easily pick and choose from a wide array of commonly used design axes
  2. To facilitate testing of representations within the context of sequential learning, particularly imitation learning and offline reinforcement learning

Common Use Cases

Do you want to…

  • Reproduce our results? You can find scripts and instructions here to help reproduce our benchmark results.
  • Design and experiment with a new representation learning algorithm using our modular components? You can find documentation on that here
  • Use our algorithm definitions in a setting other than sequential learning? The base example here demonstrates this simplified use case

Otherwise, you can see our full ReadTheDocs documentation here.

Modular Algorithm Design

This library was designed in a way that breaks down the definition of a representation learning algorithm into several key parts. The intention was that this system be flexible enough many commonly used algorithms can be defined through different combinations of these modular components.

The design relies on the central concept of a "context" and a "target". In very rough terms, all of our algorithms work by applying some transformation to the context, some transformation to the target, and then calculating a loss as a function of those two transformations. Sometimes an extra context object is passed in

Some examples are:

  • In SimCLR, the context and target are the same image frame, and augmentation and then encoding is applied to both context and target. That learned representation is sent through a decoder, and then the context and target representations are pulled together with a contrastive loss.
  • In TemporalCPC, the context is a frame at time t, and the target a frame at time t+k, and then, similarly to SimCLR above, augmentation is applied to the frame before it's put through an encoder, and the two resulting representations pulled together
  • In a Variational Autoencoder, the context and target are the same image frame. An bottleneck encoder and then a reconstructive decoder are applied to the context, and this reconstructed context is compared to the target through a L2 pixel loss
  • A Dynamics Prediction model can be seen as an conceptual combination of an autoencoder (which tries to predict the current full image frame) and TemporalCPC, which predicts future information based on current information. In the case of a Dynamics model, we predict a future frame (the target) given the current frame (context) and an action as extra context.

This abstraction isn't perfect, but we believe it is coherent enough to allow for a good number of shared mechanisms between algorithms, and flexible enough to support a wide variety of them.

The modular design mentioned above is facilitated through the use of a number of class interfaces, each of which handles a different component of the algorithm. By selecting different implementations of these shared interfaces, and creating a RepresentationLearner that takes them as arguments, and handles the base machinery of performing transformations.

A diagram showing how these components made up a training pipeline for our benchmark

  1. TargetPairConstructer - This component takes in a set of trajectories (assumed to be iterators of dicts containing 'obs' and optional 'acts', and 'dones' keys) and creates a dataset of (context, target, optional extra context) pairs that will be shuffled to form the training set.
  2. Augmenter - This component governs whether either or both of the context and target objects are augmented before being passed to the encoder. Note that this concept only meaningfully applies when the object being augmented is an image frame.
  3. Encoder - The encoder is responsible for taking in an image frame and producing a learned vector representation. It is optionally chained with a Decoder to produce the input to the loss function (which may be a reconstructed image in the case of VAE or Dynamics, or may be a projected version of the learned representation in the case of contrastive methods like SimCLR that use a projection head)
  4. Decoder - As mentioned above, the Decoder acts as a bridge between the representation in the form you want to use for transfer, and whatever input is required your loss function, which is often some transformation of that canonical representation.
  5. BatchExtender - This component is used for situations where you want to calculate loss on batch elements that are not part of the batch that went through your encoder and decoder on this step. This is centrally used for contrastive methods that use momentum, since in that case, you want to use elements from a cached store of previously-calculated representations as negatives in your contrastive loss
  6. LossCalculator - This component takes in the transformed context and transformed target and handles the loss calculation, along with any transformations that need to happen as a part of that calculation.

Training Scripts

In addition to machinery for constructing algorithms, the repo contains a set of Sacred-based training scripts for testing different Representation Learning algorithms as either pretraining or joint training components within an imitation learning pipeline. These are likeliest to be a fit for your use case if you want to reproduce our results, or train models in similar settings

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022