Code for "Universal inference meets random projections: a scalable test for log-concavity"

Overview

How to use this repository

This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test for log-concavity" by Robin Dunn, Larry Wasserman, and Aaditya Ramdas.

Folder contents

  • batch_scripts: Contains SLURM batch scripts to run the simulations. Scripts are labeled by the figure for which their simulations produce data. These scripts run the code in sim_code, using the parameters in sim_params.
  • data: Output of simulations.
  • plot_code: Reads simulation outputs from data and reproduces all figures in the paper. Plots are saved to plots folder.
  • plots: Contains all plots in paper.
  • sim_code: R code to run simulations. Simulation output is saved to data folder.
  • sim_params: Parameters for simulations. Each row contains a single choice of parameters. The scripts in sim_code read in these files, and the scripts in batch_scripts loop through all choices of parameters.

How do I ...

Produce the simulations for a given figure?

In the batch_scripts folder, scripts are labeled by the figure for which they simulate data. Run all batch scripts corresponding to the figure of interest. The allocated run time is estimated from the choice of parameters for which the code has the longest run time. Many scripts will run faster than this time. The files in sim_code each contain progress bars to estimate the remaining run time. You may wish to start running these files outside of a batch submission to understand the run time on your computing system.

Alternatively, to run the code without using a job submission system, click on any .sh file. The Rscript lines can be run on a terminal, replacing $SLURM_ARRAY_TASK_ID with all of the indices in the batch array.

The simulation output will be stored in the data folder, with one dataset per choice of parameters. To combine these datasets into a single dataset (as they currently appear in data), run the code in sim_code/combine_datasets.R.

Example: batch_scripts/fig01_fully_NP_randproj.sh

This script reproduces the universal test simulations for Figure 1. To do this, it runs the R script at sim_code/fig01_fully_NP_randproj.R. It reads in the parameters from sim_params/fig01_fully_NP_randproj_params.csv. There are 30 sets of parameters in total. The results will be stored in the data folder, with names such as fig01_fully_NP_randproj_1.csv, ..., fig01_fully_NP_randproj_30.csv. To combine these files into a single .csv file, run the code at sim_code/combine_datasets.R.

Examine the code for a given simulation?

The R code in sim_code is labeled by the figures for which they simulate data. Click on all files corresponding to a given figure.

Reproduce a figure without rerunning the simulations?

The R scripts in plot_code are labeled by their corresponding plots. They read in the necessary simulated data from the data folder and output the figures to the plots folder.

Owner
Robin Dunn
Principal Statistical Consultant, Novartis PhD in Statistics, Carnegie Mellon, 2021
Robin Dunn
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022