Code for "Universal inference meets random projections: a scalable test for log-concavity"

Overview

How to use this repository

This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test for log-concavity" by Robin Dunn, Larry Wasserman, and Aaditya Ramdas.

Folder contents

  • batch_scripts: Contains SLURM batch scripts to run the simulations. Scripts are labeled by the figure for which their simulations produce data. These scripts run the code in sim_code, using the parameters in sim_params.
  • data: Output of simulations.
  • plot_code: Reads simulation outputs from data and reproduces all figures in the paper. Plots are saved to plots folder.
  • plots: Contains all plots in paper.
  • sim_code: R code to run simulations. Simulation output is saved to data folder.
  • sim_params: Parameters for simulations. Each row contains a single choice of parameters. The scripts in sim_code read in these files, and the scripts in batch_scripts loop through all choices of parameters.

How do I ...

Produce the simulations for a given figure?

In the batch_scripts folder, scripts are labeled by the figure for which they simulate data. Run all batch scripts corresponding to the figure of interest. The allocated run time is estimated from the choice of parameters for which the code has the longest run time. Many scripts will run faster than this time. The files in sim_code each contain progress bars to estimate the remaining run time. You may wish to start running these files outside of a batch submission to understand the run time on your computing system.

Alternatively, to run the code without using a job submission system, click on any .sh file. The Rscript lines can be run on a terminal, replacing $SLURM_ARRAY_TASK_ID with all of the indices in the batch array.

The simulation output will be stored in the data folder, with one dataset per choice of parameters. To combine these datasets into a single dataset (as they currently appear in data), run the code in sim_code/combine_datasets.R.

Example: batch_scripts/fig01_fully_NP_randproj.sh

This script reproduces the universal test simulations for Figure 1. To do this, it runs the R script at sim_code/fig01_fully_NP_randproj.R. It reads in the parameters from sim_params/fig01_fully_NP_randproj_params.csv. There are 30 sets of parameters in total. The results will be stored in the data folder, with names such as fig01_fully_NP_randproj_1.csv, ..., fig01_fully_NP_randproj_30.csv. To combine these files into a single .csv file, run the code at sim_code/combine_datasets.R.

Examine the code for a given simulation?

The R code in sim_code is labeled by the figures for which they simulate data. Click on all files corresponding to a given figure.

Reproduce a figure without rerunning the simulations?

The R scripts in plot_code are labeled by their corresponding plots. They read in the necessary simulated data from the data folder and output the figures to the plots folder.

Owner
Robin Dunn
Principal Statistical Consultant, Novartis PhD in Statistics, Carnegie Mellon, 2021
Robin Dunn
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022