The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

Overview

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might be broken and I definitely don't recommend to use any of the code in any sort of production application. However, for research purposes this code might be useful so I decided to open-source it. Use at your own risk!

Requirements

Use pip to install most requriements (pip install -r requriements.txt). Sometimes this causes problems if Cython, numpy and scipy are not already installed, in which case this needs to be done manually.

Additionally, some packages must be installed that are not provided by pip.

pySimox and pyMMM

pySimox and pyMMM must be installed manually as well. To build them, perform the following steps:

git submodule update --init --recursive
cd vendor/pySimox/build
cmake ..
make
cp _pysimox.so ../../../lib/python2.7/site-packages/_pysimox.so
cp pysimox.py ../../../lib/python2.7/site-packages/pysimox.py
cd ../pyMMM/build
cmake ..
make
cp _pymmm.so ../../../lib/python2.7/site-packages/_pymmm.so
cp pymmm.py ../../../lib/python2.7/site-packages/pymmm.py

Note that the installation script may need some fine-tuning. Additionally, this assumes that all virtualenv is set up in the root of this git repo.

Basic Usage

This repo contains two main programs: dataset.py and evaluate_new.py. All of them are located in src and should be run from this directory. There are some additional files in there, some of them are out-dated and should be deleted (e.g. evaluate.py), some of them are really just scripts and should be moved to the scripts folder eventually.

The dataset tool

The dataset tool is concerened with handling everything related to datasets: plot plots features, export saves a dataset in a variety of formats, report prints details about a dataset and check performs a consistency check. Additionally, export-all can be used to create a dataset that contains all features (normalized and unnormalized) by merging Vicon C3D and MMM files into one giant file. A couple of examples:

  • python dataset.py ../data/dataset1.json plot --features root_pos plots the root_pos feature of all motions in the dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json export --output ~/export.pkl exports dataset1 as a single pickled file; usually a JSON manifest is used
  • python dataset.py ../data/dataset1.json export-all --output ~/export_all.pkl exports dataset1 by combining vicon and MMM files and by computing both the normalized and unnormalized version of all features. It also performs normalization on the vicon data by using additional information from the MMM data (namely the root_pos and root_rot); the dataset has to be a JSON manifest
  • python dataset.py ../data/dataset1.json report prints details about a dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json check performs a consistency check of a dataset; the manifest has to be a JSON manifest

Additional parameters are avaialble for most commands. Use dataset --help to get an overview.

The evaluate_new tool

The evaluate_new tool can be used to perform feature selection (using the feature command) or to evaluate different types of models with decision makers (by using the model command). It is important to note that the evaluate_new tool expects a pickled version of the dataset, hence export or export_all must be used to prepare a dataset. This is to avoid the computational complexity.

A couple of examples:

  • python evaluate_new.py model ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --decision-maker log-regression --n-states 5 --model fhmm-seq --output-dir ~/out trains a HMM ensemble with each HMM having 5 states on the normalized_joint_pos and normalized_root_pos features and uses logistic regression to perform the final predicition. The results are also saved in the directory ~/out
  • python evaluate_new.py features ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --measure wasserstein performs feature selection using the starting set normalized_joint_pos normalized_root_pos and the wasserstein measure

From dataset to result

First, define a JSON manifest dataset.json that links together the individual motions and pick labels. Next, export the dataset by using python dataset.py ../data/dataset.json export-all --output ../data/dataset_all.pkl. If you need smoothing, simply load the dataset (using pickle.load()), call smooth_features() on the Dataset object and dump it to a new file. There's currently no script for this but it can be done using three lines and the interactive python interpreter. Next, perform feature selection using python evaluate_new.py features ../data/dataset_all.pkl --features <list of features> --measure wasserstein --output-dir ~/features --transformers minmax-scaler. You'll want to use the minmax scaler transformer to avoid numerical problems during training. This will probably take a while. The results (at ~/features) will give you the best feature subsets that were found. Next, use those features to train an HMM ensemble: python evaluate_new model ../data/dataset_all.pkl --features <best features> --model fhmm-seq --n-chains 2 --n-states 10 --n-training-iter 30 -decision-maker log-regression --transformers minmax-scaler --output-dir ~/train (again, the minmax-scaler is almost always a good idea). The results will be in ~/output.

Owner
Matthias Plappert
I am a research scientist working on machine learning, and especially deep reinforcement learning, in robotics.
Matthias Plappert
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022