A real world application of a Recurrent Neural Network on a binary classification of time series data

Overview

What is this

This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data cleanup, model creation, fitting, and testing/reporting and was designed and analysed in less than 24 hours.

Challenge and input

Three input files were provided for this challenge:

  • aigua.csv
  • aire.csv
  • amoni.csv (amoni_pred.csv is the same thing with integers rather than booleans)

The objective is to train a Machine Learning classifier that can predict dangerous drift on amoni.

Analysis procedure

Gretl has benn used to analyze the data.

Ideally, fuzzing techniques would be applied that would remove the input noise on amoni from the correlation with aigua.csv and aire.csv. After many hours of analysis I decided that the input files aire.csv and aigua.csv did not provide enough valuable data.

After much analysis of the amoni.csv file, I identified a technique that was able to remove most of the noise.

The technique has been implemented into the run.py file. This file cleanups up the data on amoni_pred.csv. It groups data by time intervals and gets the mean. It removes values that are too small. It clips the domain of the values. It removes noise by selecting the minimum values in a window slice. And (optionally) it corrects the dangerous drift values.

Generating the model

Once the file amoni_pred_base.csv has been created after cleaning up the input, we can move on to generating the model. Models are created and trained by the pred.py file. This file creates a Neural Network architecture with Recurrent Neural Networks (RNN). To be more precise, this NN has been tested with SimpleRNN and Long Short Term Memory (LSTM) layers. LSTM were chosed because they were seen to converge faster and provide better results and flexibility.

The input has been split on train/test sets. In order to test the network on fully unknown intervals, the test window time is non overlapping with the train window.

In order to allow prediction of a value, a window time slice is fed on to the LSTM layers. This window only includes past values and does not provide a lookahead cheat opportunity. The model is trained with checkpoints tracking testing accuracy. Loss and accuracy graphs are automatically generated for the training and testing sets.

Testing the models

After the models have been generated, the file test.py predicts the drift and dangerous values on the input data, It also provides accuracy metrics and saves the resulting file output.csv. This file can then be analysed with Gretl.

Performance

Our models are capable of achieving:

  • ~ 75% Accuracy on dangerous drifts with minimal time delays
  • ~ 80% Accuracy on drifts with minimal time delays

Moreover, with the set of corrections of the dangerous drift input values explained in previous sections, our model can achieve:

  • ~ 87% Accuracy on dangerous drifts with minimal time delays

Future Work / Improvements

Many improvements are possible on this architecture. First of all, fine tuning of the hyper parameters (clean up data set values, NN depth, type of layers, etc) should all be considered. Furthermore, more data should be collected, because the current data set only provides information for ~ 8 drifts. On top of that, more advanced noise analysis techniques should be applied, like fuzzing, exponential smoothing etc.

Other possible techniques

Yes, Isolation Forests are probably a better idea. But LSTM layers are cool :)

Show me some pictures

In blue, expected dangerous drift predictions. In orange the prediction by the presented model.

Screenshot1

Furthermore, with the patched dangerous drift patch:

Screenshot2

Owner
Josep Maria Salvia Hornos
Studying Business Management & Computer Science :D
Josep Maria Salvia Hornos
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023