In this project, we create and implement a deep learning library from scratch.

Related tags

Deep LearningARA
Overview

ARA

In this project, we create and implement a deep learning library from scratch.

Table of Contents

About The Project

Deep learning can be considered as a subset of machine learning. It is a field that is based on learning and improving on its own by examining computer algorithms. Deep learning works with artificial neural networks consisting of many layers. This project, which is creating a Deep Learning Library from scratch, can be further implemented in various kinds of projects that involve Deep Learning. Which include, but are not limited to applications in Image, Natural Language and Speech processing, among others.

Aim

To implement a deep learning library from scratch.

Tech Stack

Technologies used in the project:

  • Python and numpy, pandas, matplotlib
  • Google Colab

File Structure

.
├── code
|   └── main.py                                   #contains the main code for the library
├── resources                                     #Notes 
|   ├── ImprovingDeepNeuralNetworks
|   |   ├── images
|   |   |   ├── BatchvsMiniBatch.png
|   |   |   ├── Bias.png
|   |   |   └── EWG.png
|   |   └── notes.md
|   ├── Course1.md                               
|   ├── accuracy.jpg
|   ├── error.jpg
|   └── grad_des_graph.jpg
├── LICENSE.txt
├── ProjectReport.pdf                            #Project Report
└── README.md                                    #Readme

Approach

The approach of the project is to basically create a deep learning library, as stated before. The aim of the project was to implement various deep learning algorithms, in order to drive a deep neural network and hence,create a deep learning library, which is modular,and driven on user input so that it can be applied for various deep learning processes, and to train and test it against a model.

Theory

A neural network is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.

There are different types of Neural Networks

  • Standard Neural Networks
  • Convolutional Neural Networks
  • Recurring Neural Networks

Loss Function:

Loss function is defined so as to see how good the output ŷ is compared to output label y.

Cost Function :

Cost Function quantifies the error between predicted values and expected values.

Gradient Descent : -

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Getting Started

Prerequisites

  • Object oriented programming in Python

  • Linear Algebra

  • Basic knowledge of Neural Networks

  • Python 3.6 and above

    You can visit the Python Download Guide for the installation steps.

  • Install numpy next

pip install numpy

Installation

  1. Clone the repo
git clone gi[email protected]:aayushmehta123/sra_eklavya_deeplearning_library.git

Results

Result

Results obtained during training: error (where Y-axis represents the value of the cost function and X axis represents the number of iterations) accuracy (where Y-axis represents the accuracy of the prediction wrt the labels and X-axis represents the number of iterations)

Future Work

  • Short term
    • Adding class for normalization and regularization
  • Near Future
    • Addition of support for linear regression
    • Addition of classes for LSTM and GRU blocks
  • Future goal
    • Addition of algorithms to support CNN models.
    • Addition of more Machine Learning algorithms
    • Include algorithms to facilitate Image Recognition, Machine Translation and Natural Language Processing

Troubleshooting

  • Numpy library not working so we shifted workspace to colab

Contributors

Acknowledgements

Resources

License

Describe your License for your project.

Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
3 Apr 20, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022