MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Related tags

Deep Learningmplp
Overview

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

Results on MAG240M

Here, we demonstrate the following performance on the MAG240M dataset from [email protected] 2021.

Model Test Acc Validation Acc Parameters Hardware
Our Model 0.7447 0.7669 ± 0.0003 (ensemble 0.7696) 743,449 Tesla V100 (21GB)

Reproducing results

0. Requirements

Here just list python3 packages we used in this competition:

numpy==1.19.2
torch==1.5.1+cu101
dgl-cu101==0.6.0.post1
ogb==1.3.1
sklearn==0.23.2
tqdm==4.46.1

1. Prepare Graph and Features

The preprocess code modifed from dgl baseline. We created graph with 6 different edge types instead of 5.

# Time cost: 3hours,30mins

python3 $MAG_CODE_PATH/preprocess.py
        --rootdir $MAG_INPUT_PATH \
        --author-output-path $MAG_PREP_PATH/author.npy \
        --inst-output-path $MAG_PREP_PATH/inst.npy \
        --graph-output-path $MAG_PREP_PATH \
        --graph-as-homogeneous \
        --full-output-path $MAG_PREP_PATH/full_feat.npy

The graphs and features will be saved in MAG_PREP_PATH , where the MAG_PREP_PATH is specified in run.sh.

Calculate features

The meta-path based features are generated by this script. Details can be found in our technical report.

# Time cost: 2hours,20mins (only generate label related features)

python3 $MAG_CODE_PATH/feature.py
        $MAG_INPUT_PATH \
        $MAG_PREP_PATH/dgl_graph_full_heterogeneous_csr.bin \
        $MAG_FEAT_PATH \
        --seed=42

Train RGAT model and prepare RGAT features

The RGAT model is modifed from dgl baseline. The validation accuracy is 0.701 , as same as described in the dgl baseline github.

# Time cost: 33hours,40mins (20mins for each epoch)

python3 $MAG_CODE_PATH/rgat.py
        --rootdir $MAG_INPUT_PATH \
        --graph-path $MAG_PREP_PATH/dgl_graph_full_homogeneous_csc.bin \
        --full-feature-path $MAG_PREP_PATH/full_feat.npy \
        --output-path $MAG_RGAT_PATH/ \
        --epochs=100 \
        --model-path $MAG_RGAT_PATH/model.pt \
        --submission-path $MAG_RGAT_PATH/

You will get embeddings as input features of the following MPLP models.

2. Train MPLP models

The train process splits to two steps:

  1. train the model with full train samples at a large learning rate (here we use StepLR(lr=0.01, step_size=100, gamma=0.25))
  2. then fine tune the model with latest train samples (eg, paper with year >= 2018) with a small learning rate (0.000625)

You can train the MPLP model by running the following commands:

# Time cost: 2hours,40mins for each seed

for seed in $(seq 0 7);
do
    python3 $MAG_CODE_PATH/mplp.py \
            $MAG_INPUT_PATH \
            $MAG_MPLP_PATH/data/ \
            $MAG_MPLP_PATH/output/seed${seed} \
            --gpu \
            --seed=${seed} \
            --batch_size=10240 \
            --epochs=200 \
            --num_layers=2 \
            --learning_rate=0.01 \
            --dropout=0.5 \
            --num_splits=5
done

3. Ensemble MPLP results

While having all the results with k-fold cross validation training under 8 different seeds, you can average the results by running code below:

python3 $MAG_CODE_PATH/ensemble.py $MAG_MPLP_PATH/output/ $MAG_SUBM_PATH
Owner
Qiuying Peng
Astrophysics -> Data Science
Qiuying Peng
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023