A collection of models for image - text generation in ACM MM 2021.

Overview

Bi-directional Image and Text Generation

UMT-BITG (image & text generator)

Unifying Multimodal Transformer for Bi-directional Image and Text Generation,
Yupan Huang, Bei Liu, Yutong Lu, in ACM MM 2021 (Industrial Track).

UMT-DBITG (diverse image & text generator)

A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation,
Yupan Huang, Bei Liu, Jianlong Fu, Yutong Lu, in ACM MM 2021 (Video and Demo Track).

Poster or slides are available in the assets folder by visiting OneDrive.

Data & Pre-trained Models

Download preprocessed data and our pre-trained models by visiting OneDrive. We suggest following our data structures, which is consistent with the paths in config.py. You may need to modify the root_path in config.py. In addition, please following the instructions to prepare some other data:

  • Download grid features in path data/grid_features provided by X-LXMERT or follow feature extraction to extract these features.
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_train_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_valid_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_test_grid8.h5 -P data/grid_features
    
  • For text-to-image evaluation on MSCOCO dataset, we need the real images to calculate the FID metric. For UMT-DBITG, we use MSCOCO karpathy split, which has been included in the OneDrive folder (images/imgs_karpathy). For UMT-BITG, please download MSCOCO validation set in path images/coco_val2014.

Citation

If you like our paper or code, please generously cite us:

@inproceedings{huang2021unifying,
  author    = {Yupan Huang and Bei Liu and Yutong Lu},
  title     = {Unifying Multimodal Transformer for Bi-directional Image and Text Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

@inproceedings{huang2021diverse,
  author    = {Yupan Huang and Bei Liu and Jianlong Fu and Yutong Lu},
  title     = {A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

Acknowledgement

Our code is based on LaBERT and X-LXMERT. Our evaluation code is from pytorch-fid and inception_score. We sincerely thank them for their contributions!

Feel free to open issues or email to me for help to use this code. Any feedback is welcome!

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022