KoBERT - Korean BERT pre-trained cased (KoBERT)

Overview

KoBERT


Korean BERT pre-trained cased (KoBERT)

Why'?'

Training Environment

  • Architecture
predefined_args = {
        'attention_cell': 'multi_head',
        'num_layers': 12,
        'units': 768,
        'hidden_size': 3072,
        'max_length': 512,
        'num_heads': 12,
        'scaled': True,
        'dropout': 0.1,
        'use_residual': True,
        'embed_size': 768,
        'embed_dropout': 0.1,
        'token_type_vocab_size': 2,
        'word_embed': None,
    }
  • 학습셋
데이터 문장 단어
한국어 위키 5M 54M
  • 학습 환경
    • V100 GPU x 32, Horovod(with InfiniBand)

2019-04-29 텐서보드 로그

  • 사전(Vocabulary)
    • 크기 : 8,002
    • 한글 위키 기반으로 학습한 토크나이저(SentencePiece)
    • Less number of parameters(92M < 110M )

Requirements

How to install

  • Install KoBERT as a python package

    pip install git+https://[email protected]/SKTBrain/[email protected]
  • If you want to modify source codes, please clone this repository

    git clone https://github.com/SKTBrain/KoBERT.git
    cd KoBERT
    pip install -r requirements.txt

How to use

Using with PyTorch

Huggingface transformers API가 편하신 분은 여기를 참고하세요.

>>> import torch
>>> from kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab  = get_pytorch_kobert_model()
>>> sequence_output, pooled_output = model(input_ids, input_mask, token_type_ids)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> sequence_output[0]
tensor([[-0.2461,  0.2428,  0.2590,  ..., -0.4861, -0.0731,  0.0756],
        [-0.2478,  0.2420,  0.2552,  ..., -0.4877, -0.0727,  0.0754],
        [-0.2472,  0.2420,  0.2561,  ..., -0.4874, -0.0733,  0.0765]],
       grad_fn=<SelectBackward>)

model은 디폴트로 eval()모드로 리턴됨, 따라서 학습 용도로 사용시 model.train()명령을 통해 학습 모드로 변경할 필요가 있다.

  • Naver Sentiment Analysis Fine-Tuning with pytorch
    • Colab에서 [런타임] - [런타임 유형 변경] - 하드웨어 가속기(GPU) 사용을 권장합니다.
    • Open In Colab

Using with ONNX

>>> import onnxruntime
>>> import numpy as np
>>> from kobert import get_onnx_kobert_model
>>> onnx_path = get_onnx_kobert_model()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>>                             'token_type_ids':np.array(token_type_ids),
>>>                             'input_mask':np.array(input_mask),
>>>                             'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452,  0.24282141,  0.25895312, ..., -0.48613444,
        -0.07305173,  0.07560554],
       [-0.24783179,  0.24200465,  0.25520486, ..., -0.4877185 ,
        -0.0727044 ,  0.07536091],
       [-0.24721591,  0.24196623,  0.2560626 , ..., -0.48743123,
        -0.07326943,  0.07650235]], dtype=float32)

ONNX 컨버팅은 soeque1께서 도움을 주셨습니다.

Using with MXNet-Gluon

>>> import mxnet as mx
>>> from kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372  0.24282135  0.2589539  ... -0.48613444 -0.07305248
   0.07560539]
 [-0.24783105  0.242005    0.25520545 ... -0.48771808 -0.07270523
   0.07536077]
 [-0.24721491  0.241966    0.25606337 ... -0.48743105 -0.07327032
   0.07650219]]
<NDArray 3x768 @cpu(0)>
  • Naver Sentiment Analysis Fine-Tuning with MXNet
    • Open In Colab

Tokenizer

>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp  = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']

Subtasks

Naver Sentiment Analysis

Model Accuracy
BERT base multilingual cased 0.875
KoBERT 0.901
KoGPT2 0.899

KoBERT와 CRF로 만든 한국어 객체명인식기

문장을 입력하세요:  SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] <SKTBrain:ORG>에서 <KoBERT:POH> 모델을 공개해준 덕분에 <BERT-CRF:POH> 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]

Release

  • v0.2.1
    • guide default 'import statements'
  • v0.2
    • download large files from aws s3
    • rename functions
  • v0.1.2
    • Guaranteed compatibility with higher versions of transformers
    • fix pad token index id
  • v0.1.1
    • 사전(vocabulary)과 토크나이저 통합
  • v0.1
    • 초기 모델 릴리즈

Contacts

KoBERT 관련 이슈는 이곳에 등록해 주시기 바랍니다.

License

KoBERTApache-2.0 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 LICENSE 파일에서 확인하실 수 있습니다.

Owner
SK T-Brain
Artificial Intelligence
SK T-Brain
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022