Edge-Augmented Graph Transformer

Overview

PWCPWCPWCPWCPWC

Edge-augmented Graph Transformer

Introduction

This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https://arxiv.org/abs/2108.03348, which augments the Transformer architecture with residual edge channels. The resultant architecture can directly process graph-structured data and acheives good results on supervised graph-learning tasks as presented by Dwivedi et al.. It also achieves good performance on the large-scale PCQM4M-LSC (0.1263 MAE on val) dataset. EGT beats convolutional/message-passing graph neural networks on a wide range of supervised tasks and thus demonstrates that convolutional aggregation is not an essential inductive bias for graphs.

Requirements

  • python >= 3.7
  • tensorflow >= 2.1.0
  • h5py >= 2.8.0
  • numpy >= 1.18.4
  • scikit-learn >= 0.22.1

Download the Datasets

For our experiments, we converted the datasets to HDF5 format for the convenience of using them without any specific library. Only the h5py library is required. The datasets can be downloaded from -

Or you can simply run the provided bash scripts download_medium_scale_datasets.sh, download_large_scale_datasets.sh. The default location of the datasets is the datasets directory.

Run Training and Evaluations

You must create a JSON config file containing the configuration of a model, its training and evaluation configs (configurations). The same config file is used to do both training and evaluations.

  • To run training: python run_training.py <config_file.json>
  • To end training (prematurely): python end_training.py <config_file.json>
  • To perform evaluations: python do_evaluations.py <config_file.json>

Config files for the main results presented in the paper are contained in the configs/main directory, whereas configurations for the ablation study are contained in the configs/ablation directory. The paths and names of the files are self-explanatory.

More About Training and Evaluations

Once the training is started a model folder will be created in the models directory, under the specified dataset name. This folder will contain a copy of the input config file, for the convenience of resuming training/evaluation. Also, it will contain a config.json which will contain all configs, including unspecified default values, used for the training. Training will be checkpointed per epoch. In case of any interruption you can resume training by running the run_training.py with the config.json file again.

In case you wish to finalize training midway, just stop training and run end_training.py script with the config.json file to save the model weights.

After training, you can run the do_evaluations.py script with the same config file to perform evaluations. Alongside being printed to stdout, results will be saved in the predictions directory, under the model directory.

Config File

The config file can contain many different configurations, however, the only required configuration is scheme, which specifies the training scheme. If the other configurations are not specified, a default value will be assumed for them. Here are some of the commonly used configurations:

scheme: Used to specify the training scheme. It has a format <dataset_name>.<positional_encoding>. For example: cifar10.svd or zinc.eig. If no encoding is to be used it can be something like pcqm4m.mat. For a full list you can explore the lib/training/schemes directory.

dataset_path: If the datasets are contained in the default location in the datasets directory, this config need not be specified. Otherwise you have to point it towards the <dataset_name>.h5 file.

model_name: Serves as an identifier for the model, also specifies default path of the model directory, weight files etc.

save_path: The training process will create a model directory containing the logs, checkpoints, configs, model summary and predictions/evaluations. By default it creates a folder at models/<dataset_name>/<model_name> but it can be changed via this config.

cache_dir: During first time of training/evaluation the data will be cached to a tensorflow cache format. Default path is data_cache/<dataset_name>/<positional_encoding>. But it can be changed via this config.

distributed: In a multi-gpu setting you can set it to True, for distributed training.

batch_size: Batch size.

num_epochs: Maximum Number of epochs.

initial_lr: Initial learning rate. In case of warmup it is the maximum learning rate.

rlr_factor: Reduce LR on plateau factor. Setting it to a value >= 1.0 turns off Reduce LR.

rlr_patience: Reduce LR patience, i.e. the number of epochs after which LR is reduced if validation loss doesn't improve.

min_lr_factor: The factor by which the minimum LR is smaller, of the initial LR. Default is 0.01.

model_height: The number of layers L.

model_width: The dimensionality of the node channels d_h.

edge_width: The dimensionality of the edge channels d_e.

num_heads: The number of attention heads. Default is 8.

ffn_multiplier: FFN multiplier for both channels. Default is 2.0 .

virtual_nodes: number of virtual nodes. 0 (default) would result in global average pooling being used instead of virtual nodes.

upto_hop: Clipping value of the input distance matrix. A value of 1 (default) would result in adjacency matrix being used as input structural matrix.

mlp_layers: Dimensionality of the final MLP layers, specified as a list of factors with respect to d_h. Default is [0.5, 0.25].

gate_attention: Set this to False to get the ungated EGT variant (EGT-U).

dropout: Dropout rate for both channels. Default is 0.

edge_dropout: If specified, applies a different dropout rate to the edge channels.

edge_channel_type: Used to create ablated variants of EGT. A value of "residual" (default) implies pure/full EGT. "constrained" implies EGT-constrained. "bias" implies EGT-simple.

warmup_steps: If specified, performs a linear learning rate warmup for the specified number of gradient update steps.

total_steps: If specified, performs a cosine annealing after warmup, so that the model is trained for the specified number of steps.

[For SVD-based encodings]:

use_svd: Turning this off (False) would result in no positional encoding being used.

sel_svd_features: Rank of the SVD encodings r.

random_neg: Augment SVD encodings by random negation.

[For Eigenvectors encodings]:

use_eig: Turning this off (False) would result in no positional encoding being used.

sel_eig_features: Number of eigen vectors.

[For Distance prediction Objective (DO)]:

distance_target: Predict distance up to the specified hop, nu.

distance_loss: Factor by which to multiply the distance prediction loss, kappa.

Creation of the HDF5 Datasets from Scratch

We included two Jupyter notebooks to demonstrate how the HDF5 datasets are created

  • For the medium scale datasets view create_hdf_benchmarking_datasets.ipynb. You will need pytorch, ogb==1.1.1 and dgl==0.4.2 libraries to run the notebook. The notebook is also runnable on Google Colaboratory.
  • For the large scale pcqm4m dataset view create_hdf_pcqm4m.ipynb. You will need pytorch, ogb>=1.3.0 and rdkit>=2019.03.1 to run the notebook.

Python Environment

The Anaconda environment in which our experiments were conducted is specified in the environment.yml file.

Citation

Please cite the following paper if you find the code useful:

@article{hussain2021edge,
  title={Edge-augmented Graph Transformers: Global Self-attention is Enough for Graphs},
  author={Hussain, Md Shamim and Zaki, Mohammed J and Subramanian, Dharmashankar},
  journal={arXiv preprint arXiv:2108.03348},
  year={2021}
}
Owner
Md Shamim Hussain
Md Shamim Hussain is a Ph.D. student in Computer Science at Rensselaer Polytechnic Institute, NY. He got his B.Sc. and M.Sc. in EEE from BUET, Dhaka.
Md Shamim Hussain
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023