Repositório da disciplina no semestre 2021-2

Related tags

Text Data & NLP2021-2
Overview

Avisos!

  • Nenhum aviso!

Compiladores 1

Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharia de Software
Professor:
Fábio Macêdo Mendes
Disciplina:
Compiladores 1
Semestre/ano:
02/2020
Carga horária:
60 h
Créditos:
04

Ementa

  • Introdução
  • Autômatos
  • Organização e estrutura de compiladores e interpretadores.
  • Análise léxica.
  • Expressões Regulares
  • Análise sintática.
  • Gramáticas Regulares e Livres de Contexto
  • Estruturas de Dados e representação interna de código-fonte.
  • Análise semântica.
  • Geração de código.
  • Máquinas abstratas e ambientes de tempo de execução.
  • Projeto de Compiladores.
  • Compiladores, Interpretadores e Parsers na Engenharia de Software.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: quartas e sextas-feiras às 14h Atendimento: realizado de forma assíncrona no grupo de Telegram da disciplina

Informações importantes

Este curso utiliza Telegram + GitHub + Microsoft Teams para gerenciar o curso. A comunicação com a turma é feita através do Telegram e os encontros presenciais no Microsoft Teams. Habilite a funcionalidade "Watch" no repositório para receber notificações sobre atualizações.

Github:
https://github.com/compiladores-fga/2021-2
Telegram:
(oculto, enviado por e-mail)
Teams:
(oculto, disponível no grupo de Telegram)

Critérios de avaliação

A avaliação será feita usando um critério de avaliação baseado em capacidades e competências complementada por um mecanismo de avaliação competitiva.

Avaliação por capacidades e competências

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 15 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 30 medalhas.

Código de ética e conduta

Algumas avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

As mesmas considerações também se aplicam às provas teóricas e atividades entregues no papel.

Prepare-se

O curso utiliza alguns pacotes e ferramentas para os quais cada estudante deverá providenciar a instalação o mais cedo o possível. O curso requer Python 3.6+ com alguns pacotes instalados:

  • Pip: Gerenciador de pacotes do Python (sudo apt-get install python3-pip)
  • Jupyter notebook/nteract/Google colab: Ambiente de programação científica (https://nteract.io)
  • Lark (pip3 install lark-parser --user): Biblioteca de parsing para Python. (note a ausência do sudo no comando!)
  • Docker: cria ambientes completamente isolados para teste e validação (sudo apt-get install docker.io)

Já que vamos utilizar o Python, vale a pena instalar as seguintes ferramentas:

  • virtualenvwrapper: isola ambientes de desenvolvimento
  • flake8: busca erros de estilo e programação no seu código
  • black: formatador de código de acordo com o guia de estilo do Python
  • pytest, pytest-cov: criação de testes unitários
  • hypothesis: auxilia na criação de testes unitários parametrizados.
  • Editores de código/IDE: Utilize o seu favorito. Caso precise de uma recomendação, seguem algumas: * PyCharm Educacional - IDE com ótimos recursos de introspecção e refatoração e que adora memória RAM. Possui uma versão livre e uma versão profissional paga, mas que é gratuita para estudantes. * VSCode - um bom meio termo entre uma IDE e um editor de código leve. Criado para Javascript, mas possui bons plugins para Python e várias outras linguagens. * Vi/Vim - herança dos anos 70 que nunca morre ;) Instale os plugins para Python.

DICA: em todos os casos, prefira instalar os pacotes Python utilizando o apt-get ou o mecanismo que sua distribuição fornece e, somente se o pacote não existir, instale-o utilizando o pip. Se utilizar o pip, faça a instalação de usuário utilizando o comando pip3 install <pacote> --user (NUNCA utilize o sudo junto com --user e evite instalar globalmente para evitar problemas futuros com o APT). Melhor ainda: isole o ambiente utilizado em cada disciplina com uma ferramenta como o Virtualenv ou o Poetry.

Linux e Docker

Os comandos de instalação acima assumem uma distribuição de Linux baseada em Debian. Não é necessário instalar uma distribuição deste tipo e você pode adaptar os comandos para o gerenciador de pacotes da sua distribuição (ou o Brew, no caso do OS X). Apesar do Linux não ser necessário para executar a maior parte das tarefas, é altamente recomendável que todos instalem o Docker para compartilharmos ambientes de desenvolvimento previsíveis (por exemplo, eu testarei as submissões em containers específicos que serão compartilhados com a turma). É possível executar o Docker em ambientes não-Linux utilizando o Docker Machine ou o Vagrant. Deste modo, cada aluno deve providenciar a instalação do Docker e Docker Compose na sua máquina.

Bibliografia principal

Dragon Book: Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Pearson, 2006. SICP: Structure and Interpretation of Computer Programs, Gerald Jay Sussman and Hal Abelson, MIT Press. (https://web.mit.edu/alexmv/6.037/sicp.pdf)

Material suplementar

Curso de Python: https://scrimba.com/learn/python Curso de Python no Youtube (pt-BR): https://www.youtube.com/watch?v=S9uPNppGsGo&list=PLvE-ZAFRgX8hnECDn1v9HNTI71veL3oW0

Cronograma de atividades

Consultar cronograma.

Obs.: O cronograma está sujeito a alterações.

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022