Repositório da disciplina no semestre 2021-2

Related tags

Text Data & NLP2021-2
Overview

Avisos!

  • Nenhum aviso!

Compiladores 1

Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharia de Software
Professor:
Fábio Macêdo Mendes
Disciplina:
Compiladores 1
Semestre/ano:
02/2020
Carga horária:
60 h
Créditos:
04

Ementa

  • Introdução
  • Autômatos
  • Organização e estrutura de compiladores e interpretadores.
  • Análise léxica.
  • Expressões Regulares
  • Análise sintática.
  • Gramáticas Regulares e Livres de Contexto
  • Estruturas de Dados e representação interna de código-fonte.
  • Análise semântica.
  • Geração de código.
  • Máquinas abstratas e ambientes de tempo de execução.
  • Projeto de Compiladores.
  • Compiladores, Interpretadores e Parsers na Engenharia de Software.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: quartas e sextas-feiras às 14h Atendimento: realizado de forma assíncrona no grupo de Telegram da disciplina

Informações importantes

Este curso utiliza Telegram + GitHub + Microsoft Teams para gerenciar o curso. A comunicação com a turma é feita através do Telegram e os encontros presenciais no Microsoft Teams. Habilite a funcionalidade "Watch" no repositório para receber notificações sobre atualizações.

Github:
https://github.com/compiladores-fga/2021-2
Telegram:
(oculto, enviado por e-mail)
Teams:
(oculto, disponível no grupo de Telegram)

Critérios de avaliação

A avaliação será feita usando um critério de avaliação baseado em capacidades e competências complementada por um mecanismo de avaliação competitiva.

Avaliação por capacidades e competências

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 15 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 30 medalhas.

Código de ética e conduta

Algumas avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

As mesmas considerações também se aplicam às provas teóricas e atividades entregues no papel.

Prepare-se

O curso utiliza alguns pacotes e ferramentas para os quais cada estudante deverá providenciar a instalação o mais cedo o possível. O curso requer Python 3.6+ com alguns pacotes instalados:

  • Pip: Gerenciador de pacotes do Python (sudo apt-get install python3-pip)
  • Jupyter notebook/nteract/Google colab: Ambiente de programação científica (https://nteract.io)
  • Lark (pip3 install lark-parser --user): Biblioteca de parsing para Python. (note a ausência do sudo no comando!)
  • Docker: cria ambientes completamente isolados para teste e validação (sudo apt-get install docker.io)

Já que vamos utilizar o Python, vale a pena instalar as seguintes ferramentas:

  • virtualenvwrapper: isola ambientes de desenvolvimento
  • flake8: busca erros de estilo e programação no seu código
  • black: formatador de código de acordo com o guia de estilo do Python
  • pytest, pytest-cov: criação de testes unitários
  • hypothesis: auxilia na criação de testes unitários parametrizados.
  • Editores de código/IDE: Utilize o seu favorito. Caso precise de uma recomendação, seguem algumas: * PyCharm Educacional - IDE com ótimos recursos de introspecção e refatoração e que adora memória RAM. Possui uma versão livre e uma versão profissional paga, mas que é gratuita para estudantes. * VSCode - um bom meio termo entre uma IDE e um editor de código leve. Criado para Javascript, mas possui bons plugins para Python e várias outras linguagens. * Vi/Vim - herança dos anos 70 que nunca morre ;) Instale os plugins para Python.

DICA: em todos os casos, prefira instalar os pacotes Python utilizando o apt-get ou o mecanismo que sua distribuição fornece e, somente se o pacote não existir, instale-o utilizando o pip. Se utilizar o pip, faça a instalação de usuário utilizando o comando pip3 install <pacote> --user (NUNCA utilize o sudo junto com --user e evite instalar globalmente para evitar problemas futuros com o APT). Melhor ainda: isole o ambiente utilizado em cada disciplina com uma ferramenta como o Virtualenv ou o Poetry.

Linux e Docker

Os comandos de instalação acima assumem uma distribuição de Linux baseada em Debian. Não é necessário instalar uma distribuição deste tipo e você pode adaptar os comandos para o gerenciador de pacotes da sua distribuição (ou o Brew, no caso do OS X). Apesar do Linux não ser necessário para executar a maior parte das tarefas, é altamente recomendável que todos instalem o Docker para compartilharmos ambientes de desenvolvimento previsíveis (por exemplo, eu testarei as submissões em containers específicos que serão compartilhados com a turma). É possível executar o Docker em ambientes não-Linux utilizando o Docker Machine ou o Vagrant. Deste modo, cada aluno deve providenciar a instalação do Docker e Docker Compose na sua máquina.

Bibliografia principal

Dragon Book: Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Pearson, 2006. SICP: Structure and Interpretation of Computer Programs, Gerald Jay Sussman and Hal Abelson, MIT Press. (https://web.mit.edu/alexmv/6.037/sicp.pdf)

Material suplementar

Curso de Python: https://scrimba.com/learn/python Curso de Python no Youtube (pt-BR): https://www.youtube.com/watch?v=S9uPNppGsGo&list=PLvE-ZAFRgX8hnECDn1v9HNTI71veL3oW0

Cronograma de atividades

Consultar cronograma.

Obs.: O cronograma está sujeito a alterações.

Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023