Repositório da disciplina no semestre 2021-2

Related tags

Text Data & NLP2021-2
Overview

Avisos!

  • Nenhum aviso!

Compiladores 1

Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharia de Software
Professor:
Fábio Macêdo Mendes
Disciplina:
Compiladores 1
Semestre/ano:
02/2020
Carga horária:
60 h
Créditos:
04

Ementa

  • Introdução
  • Autômatos
  • Organização e estrutura de compiladores e interpretadores.
  • Análise léxica.
  • Expressões Regulares
  • Análise sintática.
  • Gramáticas Regulares e Livres de Contexto
  • Estruturas de Dados e representação interna de código-fonte.
  • Análise semântica.
  • Geração de código.
  • Máquinas abstratas e ambientes de tempo de execução.
  • Projeto de Compiladores.
  • Compiladores, Interpretadores e Parsers na Engenharia de Software.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: quartas e sextas-feiras às 14h Atendimento: realizado de forma assíncrona no grupo de Telegram da disciplina

Informações importantes

Este curso utiliza Telegram + GitHub + Microsoft Teams para gerenciar o curso. A comunicação com a turma é feita através do Telegram e os encontros presenciais no Microsoft Teams. Habilite a funcionalidade "Watch" no repositório para receber notificações sobre atualizações.

Github:
https://github.com/compiladores-fga/2021-2
Telegram:
(oculto, enviado por e-mail)
Teams:
(oculto, disponível no grupo de Telegram)

Critérios de avaliação

A avaliação será feita usando um critério de avaliação baseado em capacidades e competências complementada por um mecanismo de avaliação competitiva.

Avaliação por capacidades e competências

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 15 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 30 medalhas.

Código de ética e conduta

Algumas avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

As mesmas considerações também se aplicam às provas teóricas e atividades entregues no papel.

Prepare-se

O curso utiliza alguns pacotes e ferramentas para os quais cada estudante deverá providenciar a instalação o mais cedo o possível. O curso requer Python 3.6+ com alguns pacotes instalados:

  • Pip: Gerenciador de pacotes do Python (sudo apt-get install python3-pip)
  • Jupyter notebook/nteract/Google colab: Ambiente de programação científica (https://nteract.io)
  • Lark (pip3 install lark-parser --user): Biblioteca de parsing para Python. (note a ausência do sudo no comando!)
  • Docker: cria ambientes completamente isolados para teste e validação (sudo apt-get install docker.io)

Já que vamos utilizar o Python, vale a pena instalar as seguintes ferramentas:

  • virtualenvwrapper: isola ambientes de desenvolvimento
  • flake8: busca erros de estilo e programação no seu código
  • black: formatador de código de acordo com o guia de estilo do Python
  • pytest, pytest-cov: criação de testes unitários
  • hypothesis: auxilia na criação de testes unitários parametrizados.
  • Editores de código/IDE: Utilize o seu favorito. Caso precise de uma recomendação, seguem algumas: * PyCharm Educacional - IDE com ótimos recursos de introspecção e refatoração e que adora memória RAM. Possui uma versão livre e uma versão profissional paga, mas que é gratuita para estudantes. * VSCode - um bom meio termo entre uma IDE e um editor de código leve. Criado para Javascript, mas possui bons plugins para Python e várias outras linguagens. * Vi/Vim - herança dos anos 70 que nunca morre ;) Instale os plugins para Python.

DICA: em todos os casos, prefira instalar os pacotes Python utilizando o apt-get ou o mecanismo que sua distribuição fornece e, somente se o pacote não existir, instale-o utilizando o pip. Se utilizar o pip, faça a instalação de usuário utilizando o comando pip3 install <pacote> --user (NUNCA utilize o sudo junto com --user e evite instalar globalmente para evitar problemas futuros com o APT). Melhor ainda: isole o ambiente utilizado em cada disciplina com uma ferramenta como o Virtualenv ou o Poetry.

Linux e Docker

Os comandos de instalação acima assumem uma distribuição de Linux baseada em Debian. Não é necessário instalar uma distribuição deste tipo e você pode adaptar os comandos para o gerenciador de pacotes da sua distribuição (ou o Brew, no caso do OS X). Apesar do Linux não ser necessário para executar a maior parte das tarefas, é altamente recomendável que todos instalem o Docker para compartilharmos ambientes de desenvolvimento previsíveis (por exemplo, eu testarei as submissões em containers específicos que serão compartilhados com a turma). É possível executar o Docker em ambientes não-Linux utilizando o Docker Machine ou o Vagrant. Deste modo, cada aluno deve providenciar a instalação do Docker e Docker Compose na sua máquina.

Bibliografia principal

Dragon Book: Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Pearson, 2006. SICP: Structure and Interpretation of Computer Programs, Gerald Jay Sussman and Hal Abelson, MIT Press. (https://web.mit.edu/alexmv/6.037/sicp.pdf)

Material suplementar

Curso de Python: https://scrimba.com/learn/python Curso de Python no Youtube (pt-BR): https://www.youtube.com/watch?v=S9uPNppGsGo&list=PLvE-ZAFRgX8hnECDn1v9HNTI71veL3oW0

Cronograma de atividades

Consultar cronograma.

Obs.: O cronograma está sujeito a alterações.

SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022