TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Overview

基于TaCL-BERT的中文命名实体识别及中文分词

Paper: TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

论文主Github repo: https://github.com/yxuansu/TaCL

引用:

如果我们提供的资源对你有帮助,请考虑引用我们的文章。

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

环境配置

python version == 3.8
pip install -r requirements.txt

模型结构

Chinese TaCL BERT + CRF

Huggingface模型:

Model Name Model Address
Chinese (cambridgeltl/tacl-bert-base-chinese) link

使用范例:

实验

一、实验数据集

(1). 命名实体识别: (1) MSRA (2) OntoNotes (3) Resume (4) Weibo

(2). 中文分词: (1) PKU (2) CityU (3) AS

二、下载数据集

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

三、下载训练好的模型

chmod +x ./download_checkpoints.sh
./download_checkpoints.sh

四、使用训练好的模型进行inference

cd ./sh_folder/inference/
chmod +x ./inference_{}.sh
./inference_{}.sh

对于不同的数据集{}的取值为['msra', 'ontonotes', 'weibo', 'resume', 'pku', 'cityu', 'as'],相关参数的含义为:

--saved_ckpt_path: 训练好的模型位置
--train_path: 训练集数据路径
--dev_path: 验证集数据路径
--test_path: 测试集数据路径
--label_path: 数据标签路径
--batch_size: inference时的batch size

五、测试集模型结果

使用提供的模型进行inference后,可以得到如下结果。

Dataset Precision Recall F1
MSRA 95.41 95.47 95.44
OntoNotes 81.88 82.98 82.42
Resume 96.48 96.42 96.45
Weibo 68.40 70.73 69.54
PKU 97.04 96.46 96.75
CityU 98.16 98.19 98.18
AS 96.51 96.99 96.75

六、从头训练一个模型

cd ./sh_folder/train/
chmod +x ./{}.sh
./{}.sh

对于不同的数据集{}的取值为['msra', 'ontonotes', 'weibo', 'resume', 'pku', 'cityu', 'as'],相关参数的含义为:

--model_name: 中文TaCL BERT的模型名称(cambridgeltl/tacl-bert-base-chinese)
--train_path: 训练集数据路径
--dev_path: 验证集数据路径
--test_path: 测试集数据路径
--label_path: 数据标签路径
--learning_rate: 学习率
--number_of_gpu: 可使用的GPU数量
--number_of_runs: 重复试验次数
--save_path_prefix: 模型存储路径

[Note 1] 我们没有对模型进行任何和学习率调参,2e-5只是默认值。通过调整学习率也许可以获得更好的结果。

[Note 2] 实际的batch size等于gradient_accumulation_steps x number_of_gpu x batch_size_per_gpu。我们推荐将其设置为128。

Inference: 使用在./sh_folder/inference/路径中的sh进行inference。将--saved_ckpt_path设置为自己重新训练好的模型的路径。

交互式使用训练好的模型进行inference

以下我们使用MSRA数据集作为范例。

(使用以下代码前,请先下载我们提供的训练好的模型以及数据集。具体的指导请见以上章节)

# 载入数据
from dataclass import Data
from transformers import AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-chinese'
tokenizer = AutoTokenizer.from_pretrained(model_name)
data_path = r'./benchmark_data/NER/MSRANER/MSRA.test.char.txt'
label_path = r'./benchmark_data/NER/MSRANER/MSRA_NER_Label.txt'
max_len = 128
data = Data(tokenizer, data_path, data_path, data_path, label_path, max_len)

# 载入模型
import torch
from model import NERModel
model = NERModel(model_name, data.num_class)
ckpt_path = r'./pretrained_ckpt/msra/msra_ckpt'
model_ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
model_parameters = model_ckpt['model']
model.load_state_dict(model_parameters)
model.eval()

# 提供输入
text = "中 共 中 央 致 中 国 致 公 党 十 一 大 的 贺 词"
text = "[CLS] " + text + " [SEP]"
tokens = tokenizer.tokenize(text)
# process token input
input_id = tokenizer.convert_tokens_to_ids(tokens)
input_id = torch.LongTensor(input_id).view(1, -1)
attn_mask = ~input_id.eq(data.pad_idx)
tgt_mask = [1.0] * len(tokens)
tgt_mask = torch.tensor(tgt_mask, dtype=torch.uint8).contiguous().view(1,-1)

# 使用模型进行解码
x = model.decode(input_id, attn_mask, tgt_mask)[0][1:-1] # remove [CLS] and [SEP] tokens.
res = ' '.join([data.id2label_dict[tag] for tag in x])
print (res)

# 模型输出结果: 
# B-NT M-NT M-NT E-NT O B-NT M-NT M-NT M-NT M-NT M-NT M-NT E-NT O O O
# 标准预测结果: 
# B-NT M-NT M-NT E-NT O B-NT M-NT M-NT M-NT M-NT M-NT M-NT E-NT O O O

联系

如果有任何的问题,以下是我的联系方式(ys484 at outlook dot com)。

Owner
Yixuan Su
Yixuan Su
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021